TensorFlow
- 使用图 (graph) 来表示计算任务。
- 在被称之为 会话 (Session) 的上下文 (context) 中执行图。
- 使用 tensor 表示数据。
- 通过 变量 (Variable) 维护状态。
- 使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据。
TensorFlow是一个编程系统,使用图来表示计算任务。图中的节点被称之为 op (operation)。 一个 op 获得 0 个或多个Tensor, 执行计算,产生 0 个或多个 Tensor。每个 Tensor 是一个类型化的多维数组。
例如,你可以将一小组图像集表示为一个四维浮点数数组,这四个维度分别是 [batch, height, width, channels]。
一个 TensorFlow 图描述了计算的过程,图必须在会话里被启动。会话将图的 op 分发到 CPU 或 GPU 之类的设备上,同时提供执行 op 的方法,方法执行后,将产生的 tensor 返回。在 Python 中,返回的 tensor 是 numpy ndarray 对象;在 C/C++ 中,返回的 tensor 是tensorflow::Tensor 实例。
计算图
TensorFlow 程序通常包括构建阶段和执行阶段。在构建阶段,op 的执行步骤被描述成一个图;在执行阶段,使用会话执行执行图中的 op。
例如, 通常在构建阶段创建一个图来表示和训练神经网络,然后在执行阶段反复执行图中的训练 op。
构建图
构建图的第一步是创建源 op,源 op 不需要任何输入,源 op 的输出被传递给其它 op 做运算。
Python 库中,op 构造器的返回值代表被构造出的 op 的输出,这些返回值可以传递给其它 op 构造器作为输入。
TensorFlow Python 库有一个默认图 (default graph),op 构造器可以为其增加节点。这个默认图对 许多程序来说已经足够用了。
import tensorflow as tf
# 创建一个常量 op, 产生一个 1x2 矩阵. 这个 op 被作为一个节点加到默认图中.
#
# 构造器的返回值代表该常量 op 的返回值.
matrix1 = tf.constant([[3., 3.]])
# 创建另外一个常量 op, 产生一个 2x1 矩阵.
matrix2 = tf.constant([[2.],[2.]])
# 创建一个矩阵乘法 matmul op , 把 'matrix1' 和 'matrix2' 作为输入.
# 返回值 'product' 代表矩阵乘法的结果.
product = tf.matmul(matrix1, matrix2)
默认图现在有三个节点,两个 constant() op,和一个matmul() op。为了真正进行矩阵相乘运算,并得到矩阵乘法的 结果,你必须在会话里启动这个图。
在一个会话中启动图
构造阶段完成后,才能启动图。启动图的第一步是创建一个 Session 对象,如果无任何创建参数,会话构造器将启动默认图。
# 启动默认图.
sess = tf.Session()
# 调用 sess 的 'run()' 方法来执行矩阵乘法 op, 传入 'product' 作为该方法的参数.
# 上面提到, 'product' 代表了矩阵乘法 op 的输出, 传入它是向方法表明, 我们希望取回矩阵乘法 op 的输出.
#
# 整个执行过程是自动化的, 会话负责传递 op 所需的全部输入. op 通常是并发执行的.
#
# 函数调用 'run(product)' 触发了图中三个 op (两个常量 op 和一个矩阵乘法 op) 的执行.
#
# 返回值 'result' 是一个 numpy `ndarray` 对象.
result = sess.run(product)
print result
# ==> [[ 12.]]
# 任务完成, 关闭会话.
sess.close()
Session 对象在使用完后需要关闭以释放资源。除了显式调用 close 外,也可以使用 “with” 代码块来自动完成关闭动作。
如下:
with tf.Session() as sess:
result = sess.run([product])
print result
交互式使用
文档中的 Python 示例使用一个会话 Session 来 启动图,并调用 Session.run() 方法执行操作。
为了便于使用诸如 IPython 之类的 Python 交互环境,可以使用 InteractiveSession 代替 Session 类,使用 Tensor.eval() 和 Operation.run() 方法代替 Session.run()。这样可以避免使用一个变量来持有会话。
# 进入一个交互式 TensorFlow 会话.
import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.Variable([1.0, 2.0])
a = tf.constant([3.0, 3.0])
# 使用初始化器 initializer op 的 run() 方法初始化 'x'
x.initializer.run()
# 增加一个减法 sub op, 从 'x' 减去 'a'. 运行减法 op, 输出结果
sub = tf.sub(x, a)
print sub.eval()
# ==> [-2. -1.]
Tensor
TensorFlow 程序使用 tensor 数据结构来代表所有的数据,计算图中,操作间传递的数据都是 tensor。TensorFlow tensor 可以看作是一个 n 维的数组或列表。 一个 tensor 包含一个静态类型 rank 和 一个 shape。
变量 (Variable)
# 创建一个变量, 初始化为标量 0.
state = tf.Variable(0, name="counter")
# 创建一个 op, 其作用是使 state 增加 1
one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)
# 启动图后, 变量必须先经过`初始化` (init) op 初始化,
# 首先必须增加一个`初始化` op 到图中.
init_op = tf.initialize_all_variables()
# 启动图, 运行 op
with tf.Session() as sess:
# 运行 'init' op
sess.run(init_op)
# 打印 'state' 的初始值
print sess.run(state)
# 运行 op, 更新 'state', 并打印 'state'
for _ in range(3):
sess.run(update)
print sess.run(state)
# 输出:
# 0
# 1
# 2
# 3
代码中 assign() 操作是图所描绘的表达式的一部分,正如 add() 操作一样。所以在调用 run() 执行表达式之前,它并不会真正执行赋值操作。
通常会将一个统计模型中的参数表示为一组变量。
例如,将一个神经网络的权重作为某个变量存储在一个 tensor 中。在训练过程中,通过重复运行训练图,更新这个 tensor。
fetch
为了取回操作的输出内容,可以在使用 Session 对象的 run() 调用 执行图时,传入一些 tensor,这些 tensor 会帮助你取回结果。在之前的例子里,我们只取回了单个节点 state,但是你也可以取回多个 tensor:
input1 = tf.constant(3.0)
input2 = tf.constant(2.0)
input3 = tf.constant(5.0)
intermed = tf.add(input2, input3)
mul = tf.mul(input1, intermed)
with tf.Session():
result = sess.run([mul, intermed])
print result
# 输出:
# [array([ 21.], dtype=float32), array([ 7.], dtype=float32)]
需要获取的多个 tensor 值,在 op 的一次运行中一起获得(而不是逐个去获取 tensor)。
feed
上述示例在计算图中引入了 tensor,以常量或变量的形式存储。TensorFlow 还提供了 feed 机制,该机制 可以临时替代图中的任意操作中的 tensor 可以对图中任何操作提交补丁,直接插入一个 tensor。
feed 使用一个 tensor 值临时替换一个操作的输出结果。你可以提供 feed 数据作为 run() 调用的参数。feed 只在调用它的方法内有效,方法结束,feed 就会消失。最常见的用例是将某些特殊的操作指定为 “feed” 操作,标记的方法是使用 tf.placeholder() 为这些操作创建占位符。
input1 = tf.placeholder(tf.types.float32)
input2 = tf.placeholder(tf.types.float32)
output = tf.mul(input1, input2)
with tf.Session() as sess:
print sess.run([output], feed_dict={input1:[7.], input2:[2.]})
# 输出:
# [array([ 14.], dtype=float32)]
如果没有正确提供 feed,placeholder() 操作将会产生错误。