metdiff

在本文中,我们报道了MeTDiff,一种用于MeRIP-Seq数据集中差异甲基化分析的新计算工具。MeTDiff允许生物学家在两种病例对照条件(例如,正常与癌症)中进行甲基化差异的转录组范围的定量比较。

在不同的模拟MeRIP-Seq数据集上评估MeTDiff以研究具有不同重复的生物学差异的影响以及偏向读数和不同程度的差异甲基化的影响。结果显示,在所有这些模拟条件下,MeTDiff可以比exomePeak更准确和稳健地鉴定差异甲基化位点。

在真实的MeRIP-Seq数据集(KO-FTO)上检查MeTDiff,结果表明MeTDiff比exomePeak获得更高的灵敏度和更高的特异性。

我们还研究MeTDiff的特性早米6在KO-FTO,KO-METTL14和KO-WTAP数据集A差异甲基化。MeTDiff的预测与每个实验的预期结果一致,因为当FTO被击倒时观察到压倒性的超DMS,而在KO-METTL14和KO-WTAP中检测到显着的低DMS。在METTL14和KO-WTAP中的低和超DMS中发现了独特的基序“AGGAG”。进一步分析揭示该基序与剪接因子的基序的紧密连接,提示米的潜在作用6甲调节剪接。最后,观察到mRNA和lncRNA中高和低DMS的不同分布,这可能表明高甲基化和低甲基化具有不同的功能。

In this article, we reported MeTDiff, a new computational tool for differential methylation analysis in MeRIP-Seq datasets. MeTDiff allows biologists to perform transcriptome-wide quantitative comparisons of methylation difference in two case-control conditions (e.g., normal vs. cancer).

MeTDiff was evaluated on different simulated MeRIP-Seq datasets to investigate the effect of biological variances with varying replicates as well as the influence of biased reads and different degree of differential methylation. The results showed that MeTDiff can more accurately and robustly identify the differential methylation sites than exomePeak in all of these simulated conditions.

MeTDiff was examined on the real MeRIP-Seq datasets (KO-FTO) and the results demonstrated that MeTDiff achieved both higher sensitivity as well as higher specificity than exomePeak.

We also examined the characteristics of MeTDiff predated m6A differential methylation in KO-FTO, KO-METTL14 and KO-WTAP datasets. MeTDiff's predictions are consistent with the expected outcome of each experiment in that overwhelming hyper-DMSs were observed when FTO was knocked down, whereas significant hypo-DMSs were detected in KO-METTL14 and KO-WTAP. A unique motif “AGGAG” was discovered in both hypo- and hyper-DMSs in METTL14 and KO-WTAP. Further analysis revealed a close connection of this motif with the motif of splicing factors, suggesting a potential role of m6A in regulating splicing. At last, distinct distributions of hyper- and hypo-DMSs in mRNA and lncRNA were observed, which may suggest that hyper- and hypo-methylation assume different functions.

 

链接:

https://ieeexplore.ieee.org/document/7052329/figures#figures

 

 

 

Matlab基于粒子群优化算法及鲁棒MPPT控制器提高光伏并网的效率内容概要:本文围绕Matlab在电力系统优化与控制领域的应用展开,重点介绍了基于粒子群优化算法(PSO)和鲁棒MPPT控制器提升光伏并网效率的技术方案。通过Matlab代码实现,结合智能优化算法与先进控制策略,对光伏发电系统的最大功率点跟踪进行优化,有效提高了系统在不同光照条件下的能量转换效率和并网稳定性。同时,文档还涵盖了多种电力系统应用场景,如微电网调度、储能配置、鲁棒控制等,展示了Matlab在科研复现与工程仿真中的强大能力。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事新能源系统开发的工程师;尤其适合关注光伏并网技术、智能优化算法应用与MPPT控制策略研究的专业人士。; 使用场景及目标:①利用粒子群算法优化光伏系统MPPT控制器参数,提升动态响应速度与稳态精度;②研究鲁棒控制策略在光伏并网系统中的抗干扰能力;③复现已发表的高水平论文(如EI、SCI)中的仿真案例,支撑科研项目与学术写作。; 阅读建议:建议结合文中提供的Matlab代码与Simulink模型进行实践操作,重点关注算法实现细节与系统参数设置,同时参考链接中的完整资源下载以获取更多复现实例,加深对优化算法与控制系统设计的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值