输入数据
第1 行是测试数据的组数n,后面跟着n 行输入。每组测试数据占1 行,包括一个正整数a (a < 32768)。
输出要求
n 行,每行输出对应一个输入。输出是两个正整数,第一个是最少的动物数,第二个是最多的动物数,两个正整数用空格分开。如果没有满足要求的情况出现,则输出2 个0。
输入样例
2
3
20
输出样例
0 0
5 10
解题思路
这个问题可以描述成任给一个整数 N,如果N 是奇数,输出0 0,否则如果N 是4 的倍数,输出N / 4 N / 2,如果N 不是4 的倍数,输出N/4+1 N/2。这是一个一般的计算题,
只要实现相应的判断和输出代码就可以了。题目中说明了输入整数在一个比较小的范围内,所以只需要考虑整数运算就可以了。
2.国际象棋的棋盘是黑白相间的 8 * 8 的方格,棋子放在格子中间。
王、后、车、象的走子规则如下:
王:横、直、斜都可以走,但每步限走一格。
后:横、直、斜都可以走,每步格数不受限制。
车:横、竖均可以走,不能斜走,格数不限。
象:只能斜走,格数不限。
写一个程序,给定起始位置和目标位置,计算王、后、车、象从起始位置走到目标位置所需的最少步数。
输入数据
第一行是测试数据的组数t(0 <= t <= 20)。以下每行是一组测试数据,每组包括棋盘上的两个位置,第一个是起始位置,第二个是目标位置。位置用"字母-数字"的形式表示,
字母从"a"到"h",数字从"1"到"8"。
输出要求
对输入的每组测试数据,输出王、后、车、象所需的最少步数。如果无法到达,就输出max
解题思路
这个问题是给定一个棋盘上的起始位置和终止位置,分别判断王、后、车、象从起始位置到达终止位置需要的步数。首先,王、后、车、象彼此独立,分别考虑就可以了。所以这个题目重点要分析王、后、车、象的行走规则特点,从而推出它们从起点到终点的步数。我们假设起始位置与终止位置在水平方向上的距离是 x,它们在竖直方向上的距离是y。根据王的行走规则,他可以横、直、斜走,每步限走一格,所以需要的步数是min(x,y)+abs(x-y)– 即x,y 中较小的一个加上x 与y 之差的绝对值。根据后行走的规则,她可以横、直、斜走,每步格数不受限制,所以需要的步数是1(x
等于y 或者 x 等于0 或者 y 等于0)或者2(x 不等于y)。根据车行走的规则,它可以横、竖走,不能斜走,格数不限,需要步数为1(x 或者y 等于0)或者2(x 和y 都不等于0)。根据象行走得规则,它可以斜走,格数不限。棋盘上的格点可以分为两类,第一类是它的横坐标和纵坐标之差为奇数,第二类是横纵坐标之差为偶数。对于只能斜走的象,它每走一步,因为横纵坐标增加或减小的绝对值相等,所以横坐标和纵坐标之差的奇偶性无论如何行走都保持不变。因此,上述的第一类点和第二类点不能互相到达。如果判断出起始点和终止点分别属于两类点,就可以得出它们之间需要无数步的结论。如果它们属于同一类点,象从起始点走到终止点需要1(x
的绝对值等于y 的绝对值)或者2(x 的绝对值不等于y 的绝对值)