一个类可以定义在另一个类的内部,前者称为嵌套类(nested class)或嵌套类型(nested type)。嵌套类常用于定义作为实现部分的类。嵌套类可用于隐藏实现细节。
嵌套类是一个独立的类,与外层类基本没什么关系。特别是,外层类的对象和嵌套类的对象是相互独立的。在嵌套类的对象中不包含任何外层类定义的成员;类似的,在外层类的对象中也不包含任何嵌套类定义的成员。
嵌套类的名字在外层类作用域中是可见的,在外层类作用域之外不可见。和其它嵌套的名字一样,嵌套类的名字不会和别的作用域中的同一个名字冲突。
嵌套类中成员的种类与非嵌套类是一样的。和其它类类似,嵌套类也使用访问限定符来控制外界对其成员的访问权限。外层类对嵌套类的成员没有特殊的访问权限,同样,嵌套类对外层类的成员也没有特殊的访问权限。
嵌套类在其外层类中定义了一个类型成员。和其它成员类似,该类型的访问权限由外层类决定。位于外层类public部分的嵌套类实际上定义了一种可以随处访问的类型;位于外层类protected部分的嵌套类定义的类型只能被外层类及其友元和派生类访问;位于外层类private部分的嵌套类定义的类型只能被外层类的成员和友元访问。
嵌套类必须声明在类的内部,但是可以定义在类的内部或者外部。当我们在外层类之外定义一个嵌套类时,必须以外层类的名字限定嵌套类的名字。在嵌套类在其外层类之外完成真正的定义之前,它都是一个不完全类型。
嵌套类和外层类是相互独立的:尽管嵌套类定义在其外层类的作用域中,但是外层类的对象和嵌套类的对象没有任何关系。嵌套类的对象只包含嵌套类定义的成员;同样,外层类的对象只包含外层类定义的成员,在外层类对象中不会有任何嵌套类的成员。
在C++11之前,嵌套类仅仅可以使用外层类的类型名、静态成员和枚举类型。但在C++11中,遵循非静态成员的通用使用规则,嵌套类可以使用外层类的任何成员。
下面是从其他文章中copy的测试代码,详细内容介绍可以参考对应的reference:
#include "nested_class.hpp"
#include <iostream>
#include <vector>
#include <typeinfo>
namespace nested_class_ {
//////////////////////////////////////////////////////////
// reference: http://en.cppreference.com/w/cpp/language/nested_types
int x, y; // globals
class enclose { // enclosing class
int x; // note: private members
static int s;
public:
struct inner { // nested class
void f(int i) {
//x = i; // Error: can't write to non-static enclose::x without instance
//int a = sizeof(x); // Error until C++11,
// OK in C++11: operand of sizeof is unevaluated,
// this use of the non-static enclose::x is allowed.
s = i; // OK: can assign to the static enclose::s
::nested_class_::x = i; // OK: can assign to global x
y = i; // OK: can assign to global y
}
void g(enclose* p, int i) {
p->x = i; // OK: assign to enclose::x
}
};
};
class enclose_ {
struct nested { // private member
void g() {}
};
public:
static nested f() { return nested{}; }
};
int test_nested_class_1()
{
//enclose_::nested n1 = enclose_::f(); // error: 'nested' is private
enclose_::f().g(); // OK: does not name 'nested'
auto n2 = enclose_::f(); // OK: does not name 'nested'
n2.g();
return 0;
}
////////////////////////////////////////////////////////
// reference: http://www.sanfoundry.com/c-tutorials-nested-structure-access/
/* structure A declared */
typedef struct A {
int a;
float b;
} New_a;
/* structure B declared */
typedef struct B {
int c;
float d;
struct A e; /* member 'e' is itself a structure */
} New_b;
int test_nested_class_2()
{
/* Let's declare variables of New_a and New_b */
New_a bread;
New_b butter; /* 'butter' is a nested structure */
/* Let's access bread using dot operator */
bread.a = 10; /* assigned member a value 10 */
bread.b = 25.50;
/* Let's access butter using dot operator */
butter.c = 10;
butter.d = 50.00;
/* Let's access member 'e' which is a nested structure */
butter.e.a = 20;
butter.e.b = 20.00;
/* Display values of members of 'butter.e' structure */
printf("butter.e.a is %4d\n", butter.e.a);
printf("butter.e.b is %.2f\n", butter.e.b);
return 0;
}
////////////////////////////////////////////////////
// reference: http://www.geeksforgeeks.org/nested-classes-in-c/
/* start of Enclosing class declaration */
class Enclosing {
int x;
/* start of Nested class declaration */
class Nested {
int y;
void NestedFun(Enclosing *e) {
std::cout << e->x; // works fine: nested class can access
// private members of Enclosing class
}
}; // declaration Nested class ends here
}; // declaration Enclosing class ends here
int test_nested_class_3()
{
return 0;
}
////////////////////////////////////////////////////////////
// reference: http://www.oopweb.com/CPP/Documents/CPPAnnotations/Volume/cplusplus16.html
class Clonable {
public:
class Base {
public:
virtual ~Base() {}
virtual Base *clone() const = 0;
};
private:
Base *d_bp;
public:
Clonable() : d_bp(0) {}
~Clonable() { delete d_bp; }
Clonable(Clonable const &other) { copy(other); }
Clonable &operator=(Clonable const &other)
{
if (this != &other) {
delete d_bp;
copy(other);
}
return *this;
}
// New for virtual constructions:
Clonable(Base const &bp)
{
d_bp = bp.clone(); // allows initialization from
} // Base and derived objects
Base &get() const
{
return *d_bp;
}
private:
void copy(Clonable const &other)
{
if ((d_bp = other.d_bp))
d_bp = d_bp->clone();
}
};
class Derived1 : public Clonable::Base
{
public:
~Derived1()
{
std::cout << "~Derived1() called\n";
}
virtual Clonable::Base *clone() const
{
return new Derived1(*this);
}
};
int test_nested_class_4()
{
std::vector<Clonable> bv;
bv.push_back(Derived1());
std::cout << "==\n";
std::cout << typeid(bv[0].get()).name() << std::endl;
std::cout << "==\n";
std::vector<Clonable> v2(bv);
std::cout << typeid(v2[0].get()).name() << std::endl;
std::cout << "==\n";
return 0;
}
/////////////////////////////////////////////////////////
// reference: http://www.sanfoundry.com/cpp-program-illustrate-nested-classes/
class Stack {
class Node {
public:
int data;
Node* next;
Node(int data, Node* next);
~Node();
}*head;
public:
Stack();
Stack(const Stack& s);
void operator=(const Stack& s);
~Stack();
void push(int data);
int peek() const;
int pop();
};
Stack::Node::Node(int data, Node* next)
{
this->data = data;
this->next = next;
}
Stack::Node::~Node() { }
Stack::Stack() { head = NULL; }
Stack::Stack(const Stack& s)
{
head = s.head;
}
void Stack::operator=(const Stack& s)
{
head = s.head;
}
void Stack::push(int data)
{
head = new Node(data, head);
}
int Stack::peek() const {
if (head == 0) {
std::cerr << "Stack empty!" << std::endl;
return -1;
}
else
return head->data;
}
int Stack::pop()
{
if (head == NULL) return -1;
int result = head->data;
Node* oldNode = head;
head = head->next;
delete oldNode;
return result;
}
Stack::~Stack()
{
if (head != NULL) {
while (head->next != NULL) {
Node* temp = head;
head = head->next;
delete temp;
}
}
}
int test_nested_class_5()
{
Stack Integers;
int value, num;
std::cout << "Enter the number of elements ";
std::cin >> num;
while (num > 0) {
std::cin >> value;
Integers.push(value);
num--;
}
while ((value = Integers.pop()) != -1)
std::cout << "Top element of stack " << value << std::endl;
return 0;
}
//////////////////////////////////////////////////////////////
// reference: https://msdn.microsoft.com/en-us/library/71dw8xzh.aspx
class X
{
template <class T>
struct Y {
T m_t;
Y(T t) : m_t(t) { }
};
Y<int> yInt;
Y<char> yChar;
public:
X(int i, char c) : yInt(i), yChar(c) { }
void print()
{
std::cout << yInt.m_t << " " << yChar.m_t << std::endl;
}
};
int test_nested_class_6()
{
X x(1, 'a');
x.print();
return 0;
}
///////////////////////////////////////////
// reference: https://msdn.microsoft.com/en-us/library/71dw8xzh.aspx
template <class T>
class X_
{
template <class U>
class Y {
U* u;
public:
Y();
U& Value();
void print();
~Y();
};
Y<int> y;
public:
X_(T t) { y.Value() = t; }
void print() { y.print(); }
};
template <class T>
template <class U>
X_<T>::Y<U>::Y()
{
std::cout << "X_<T>::Y<U>::Y()" << std::endl;
u = new U();
}
template <class T>
template <class U>
U& X_<T>::Y<U>::Value()
{
return *u;
}
template <class T>
template <class U>
void X_<T>::Y<U>::print()
{
std::cout << this->Value() << std::endl;
}
template <class T>
template <class U>
X_<T>::Y<U>::~Y()
{
std::cout << "X_<T>::Y<U>::~Y()" << std::endl;
delete u;
}
int test_nested_class_7()
{
X_<int>* xi = new X_<int>(10);
X_<char>* xc = new X_<char>('c');
xi->print();
xc->print();
delete xi;
delete xc;
return 0;
}
} // namespace nested_class_