TensorFlow系列专题(五):BP算法原理

本文详细介绍了深度学习中反向传播(BP)算法的工作原理,通过一个三层神经网络实例展示了前馈计算和反向传播的计算过程,是TensorFlow初学者掌握深度学习基础知识的重要参考资料。

 

欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/

,学习更多的机器学习、深度学习的知识!

一.反向传播算法简介

二.前馈计算的过程

  • 第一层隐藏层的计算
  • 第二层隐藏层的计算
  • 输出层的计算
三. 反向传播的计算
  • 计算偏导数
四.参考文献

 

一.反向传播算法

反向传播算法[1](Backpropagation Algorithm,简称BP算法)是深度学习的重要思想基础,对于初学者来说也是必须要掌握的基础知识,在这一小节里,我们会较为详细的介绍这一重点知识。

我们使用一个如图1所示的神经网络,该图所示是一个三层神经网络,两层隐藏层和一层输出层,输入层有两个神经元,接收输入样本 , 为网络的输出。

图1 一个三层神经网络

二.前馈计算的过程

为了理解神经网络的运算过程,我们需要先搞清楚前馈计算,即数据

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值