3 Looper线程
Looper首先是一个在线程run方法中调用了Looper.prepare()
和Looper.loop()
方法的线程。
3.1 looper的prepare
该方法位于/frameworks/base/core/java/android/os/Looper.java
中。prepare
方法会初始化一个looper线程,并且吧该looper存储到线程的ThreadLocal
中(关于ThreadLocal
,作用是保证每个线程都有其存储变量的独立副本。具有后续会分析。)首先会判断当前线程是否存储了该looper,保证一个线程只能调用prepare一次,也就是只有唯一一个looper对象。
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
prepare方法的参数quitAllowed
表示当前消息looper是否允许退出。默认是true,表示允许退出。prepare最终调用了nativeInit()
,这个jni方法实际位于frameworks/base/core/jni/android_os_MessageQueue.cpp
中,主要做了两个工作:
1、创建一个NativeMessageQueue
,并通过incStrong
增加引用计数。
2、将其指针用reinterpret_cast
转换为long并返回给java层,这部分指针转化的后续将有文章另外分析。
static jlong android_os_MessageQueue_nativeInit(JNIEnv* env, jclass clazz) {
NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue();
if (!nativeMessageQueue) {
jniThrowRuntimeException(env, "Unable to allocate native queue");
return 0;
}
nativeMessageQueue->incStrong(env);
return reinterpret_cast<jlong>(nativeMessageQueue);
}
NativeMessageQueue::NativeMessageQueue() : mPollEnv(NULL), mPollObj(NULL), mExceptionObj(NULL) {
mLooper = Looper::getForThread();
if (mLooper == NULL) {
mLooper = new Looper(false);
Looper::setForThread(mLooper);
}
}
sp<Looper> Looper::getForThread() {
int result = pthread_once(& gTLSOnce, initTLSKey);
LOG_ALWAYS_FATAL_IF(result != 0, "pthread_once failed");
return (Looper*)pthread_getspecific(gTLSKey);
}
在NativeMessageQueue
的构造方法中初始化了Looper
。getForThread
方法查询当前线程是否存在一个Looper
,不存在才创建新的looper
对象。Looper
在 system/core/libutils/Looper.cpp
. Looper在JNI层的创建过程如下
其中:eventfd
这个函数会创建一个事件对象 (eventfd object), 用来实现进程(线程)间的等待/通知(wait/notify) 机制. 内核会为这个对象维护一个64位的计数器(uint64_t),并且使用第一个参数初始化这个计数器。调用这个函数就会返回一个新的文件描述符(event object)。第二个参数 EFD__NONBLOCK,设置对象为非阻塞状态,如果设置了这个标志,read读eventfd,并且计数器的值为0,就会返回一个 EAGAIN 错误(errno = EAGAIN),而不是一直堵塞在read调用当中。此处是为避免looper在唤醒的时候被阻塞。
通过epoll来监听事件mWakeEventFd的事件,EPOLLIN表示监听该类型的事件,也就是监听mWakeEventFd上有数据可读的事件。
Looper::Looper(bool allowNonCallbacks) :
mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false),
mPolling(false), mEpollFd(-1), mEpollRebuildRequired(false),
mNextRequestSeq(0), mResponseIndex(0), mNextMessageUptime(LLONG_MAX) {
mWakeEventFd = eventfd(0, EFD_NONBLOCK);
LOG_ALWAYS_FATAL_IF(mWakeEventFd < 0, "Could not make wake event fd. errno=%d", errno);
AutoMutex _l(mLock);
rebuildEpollLocked();
}
void Looper::rebuildEpollLocked() {
// Close old epoll instance if we have one.
if (mEpollFd >= 0) {
#if DEBUG_CALLBACKS
ALOGD("%p ~ rebuildEpollLocked - rebuilding epoll set", this);
#endif
close(mEpollFd);
}
// Allocate the new epoll instance and register the wake pipe.
mEpollFd = epoll_create(EPOLL_SIZE_HINT);
LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno);
struct epoll_event eventItem;
memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union
eventItem.events = EPOLLIN;
eventItem.data.fd = mWakeEventFd;
int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake event fd to epoll instance. errno=%d",
errno);
for (size_t i = 0; i < mRequests.size(); i++) {
const Request& request = mRequests.valueAt(i);
struct epoll_event eventItem;
request.initEventItem(&eventItem);
int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, request.fd, & eventItem);
if (epollResult < 0) {
ALOGE("Error adding epoll events for fd %d while rebuilding epoll set, errno=%d",
request.fd, errno);
}
}
}
到此,looper的初始化创建就完成了。
另外,Looper还提供了一个prepareMainLooper
方法,目的是初始化主线程ActivityThread的Looper。这里首先以不可以退出的方式调用了prepare,这样就再ThreadLocal中存储了当前的looper,然后再用全局变量sMainLooper
保存了ThreadLocal的looper对象。这样做的目的是,其他线程如果需要获取主线程的Looper,可以直接使用Looper.getMainLooper()
获取。
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
public static Looper getMainLooper() {
synchronized (Looper.class) {
return sMainLooper;
}
}
3.2 looper发送消息(Native层)
定义于system/core/libutils/Looper.cpp
void Looper::sendMessage(const sp<MessageHandler>& handler, const Message& message) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
sendMessageAtTime(now, handler, message);
}
void Looper::sendMessageDelayed(nsecs_t uptimeDelay, const sp<MessageHandler>& handler,
const Message& message) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
sendMessageAtTime(now + uptimeDelay, handler, message);
}
void Looper::sendMessageAtTime(nsecs_t uptime, const sp<MessageHandler>& handler, const Message& message) {
#if DEBUG_CALLBACKS
ALOGD("%p ~ sendMessageAtTime - uptime=%" PRId64 ", handler=%p, what=%d",
this, uptime, handler.get(), message.what);
#endif
size_t i = 0;
{ // acquire lock
AutoMutex _l(mLock);
size_t messageCount = mMessageEnvelopes.size();
while (i < messageCount && uptime >= mMessageEnvelopes.itemAt(i).uptime) {
i += 1;
}
MessageEnvelope messageEnvelope(uptime, handler, message);
mMessageEnvelopes.insertAt(messageEnvelope, i, 1);
// Optimization: If the Looper is currently sending a message, then we can skip
// the call to wake() because the next thing the Looper will do after processing
// messages is to decide when the next wakeup time should be. In fact, it does
// not even matter whether this code is running on the Looper thread.
if (mSendingMessage) {
return;
}
} // release lock
// Wake the poll loop only when we enqueue a new message at the head.
if (i == 0) {
wake();
}
}
void Looper::wake() {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ wake", this);
#endif
uint64_t inc = 1;
ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t)));
if (nWrite != sizeof(uint64_t)) {
if (errno != EAGAIN) {
ALOGW("Could not write wake signal, errno=%d", errno);
}
}
}
此部分消息处理机制和Java层的消息处理类似,首先在消息队列mMessageEnvelopes中查找消息插入位置,然后把消息和其handler封装进MessageEnvelope中,再插入到消息队列。最后如果写入的位置是消息头部则调用wake方法,往mWakeEventFd写入数据,出发epoll的监听,实现looper中继续处理消息。
3.3Looper中的removeMessage
looper jni层的removeMessage相关方法,定义于system/core/libutils/Looper.cpp
void Looper::removeMessages(const sp<MessageHandler>& handler) {
#if DEBUG_CALLBACKS
ALOGD("%p ~ removeMessages - handler=%p", this, handler.get());
#endif
{ // acquire lock
AutoMutex _l(mLock);
for (size_t i = mMessageEnvelopes.size(); i != 0; ) {
const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(--i);
if (messageEnvelope.handler == handler) {
mMessageEnvelopes.removeAt(i);
}
}
} // release lock
}
void Looper::removeMessages(const sp<MessageHandler>& handler, int what) {
#if DEBUG_CALLBACKS
ALOGD("%p ~ removeMessages - handler=%p, what=%d", this, handler.get(), what);
#endif
{ // acquire lock
AutoMutex _l(mLock);
for (size_t i = mMessageEnvelopes.size(); i != 0; ) {
const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(--i);
if (messageEnvelope.handler == handler
&& messageEnvelope.message.what == what) {
mMessageEnvelopes.removeAt(i);
}
}
} // release lock
}
3.4 Looper中的fd相关方法
addfd用来添加监听的描述符fd。参数ident表示要监听的事件的标识,event表示要监听的事件,callback表示时间发生的回调函数。把传入的参数保存在request中,然后以描述符为key,保存在mRequests中,通过epoll_ctl添加或者替换这个描述符的事件监听。
int Looper::addFd(int fd, int ident, int events, Looper_callbackFunc callback, void* data) {
return addFd(fd, ident, events, callback ? new SimpleLooperCallback(callback) : NULL, data);
}
int Looper::addFd(int fd, int ident, int events, const sp<LooperCallback>& callback, void* data) {
#if DEBUG_CALLBACKS
ALOGD("%p ~ addFd - fd=%d, ident=%d, events=0x%x, callback=%p, data=%p", this, fd, ident,
events, callback.get(), data);
#endif
if (!callback.get()) {
if (! mAllowNonCallbacks) {
ALOGE("Invalid attempt to set NULL callback but not allowed for this looper.");
return -1;
}
if (ident < 0) {
ALOGE("Invalid attempt to set NULL callback with ident < 0.");
return -1;
}
} else {
ident = POLL_CALLBACK;
}
{ // acquire lock
AutoMutex _l(mLock);
Request request;
request.fd = fd;
request.ident = ident;
request.events = events;
request.seq = mNextRequestSeq++;
request.callback = callback;
request.data = data;
if (mNextRequestSeq == -1) mNextRequestSeq = 0; // reserve sequence number -1
struct epoll_event eventItem;
request.initEventItem(&eventItem);
ssize_t requestIndex = mRequests.indexOfKey(fd);
if (requestIndex < 0) {
int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, & eventItem);
if (epollResult < 0) {
ALOGE("Error adding epoll events for fd %d, errno=%d", fd, errno);
return -1;
}
mRequests.add(fd, request);
} else {
int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_MOD, fd, & eventItem);
if (epollResult < 0) {
if (errno == ENOENT) {
// Tolerate ENOENT because it means that an older file descriptor was
// closed before its callback was unregistered and meanwhile a new
// file descriptor with the same number has been created and is now
// being registered for the first time. This error may occur naturally
// when a callback has the side-effect of closing the file descriptor
// before returning and unregistering itself. Callback sequence number
// checks further ensure that the race is benign.
//
// Unfortunately due to kernel limitations we need to rebuild the epoll
// set from scratch because it may contain an old file handle that we are
// now unable to remove since its file descriptor is no longer valid.
// No such problem would have occurred if we were using the poll system
// call instead, but that approach carries others disadvantages.
#if DEBUG_CALLBACKS
ALOGD("%p ~ addFd - EPOLL_CTL_MOD failed due to file descriptor "
"being recycled, falling back on EPOLL_CTL_ADD, errno=%d",
this, errno);
#endif
epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, & eventItem);
if (epollResult < 0) {
ALOGE("Error modifying or adding epoll events for fd %d, errno=%d",
fd, errno);
return -1;
}
scheduleEpollRebuildLocked();
} else {
ALOGE("Error modifying epoll events for fd %d, errno=%d", fd, errno);
return -1;
}
}
mRequests.replaceValueAt(requestIndex, request);
}
} // release lock
return 1;
}
int Looper::removeFd(int fd) {
return removeFd(fd, -1);
}
int Looper::removeFd(int fd, int seq) {
#if DEBUG_CALLBACKS
ALOGD("%p ~ removeFd - fd=%d, seq=%d", this, fd, seq);
#endif
{ // acquire lock
AutoMutex _l(mLock);
ssize_t requestIndex = mRequests.indexOfKey(fd);
if (requestIndex < 0) {
return 0;
}
// Check the sequence number if one was given.
if (seq != -1 && mRequests.valueAt(requestIndex).seq != seq) {
#if DEBUG_CALLBACKS
ALOGD("%p ~ removeFd - sequence number mismatch, oldSeq=%d",
this, mRequests.valueAt(requestIndex).seq);
#endif
return 0;
}
// Always remove the FD from the request map even if an error occurs while
// updating the epoll set so that we avoid accidentally leaking callbacks.
mRequests.removeItemsAt(requestIndex);
int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_DEL, fd, NULL);
if (epollResult < 0) {
if (seq != -1 && (errno == EBADF || errno == ENOENT)) {
// Tolerate EBADF or ENOENT when the sequence number is known because it
// means that the file descriptor was closed before its callback was
// unregistered. This error may occur naturally when a callback has the
// side-effect of closing the file descriptor before returning and
// unregistering itself.
//
// Unfortunately due to kernel limitations we need to rebuild the epoll
// set from scratch because it may contain an old file handle that we are
// now unable to remove since its file descriptor is no longer valid.
// No such problem would have occurred if we were using the poll system
// call instead, but that approach carries others disadvantages.
#if DEBUG_CALLBACKS
ALOGD("%p ~ removeFd - EPOLL_CTL_DEL failed due to file descriptor "
"being closed, errno=%d", this, errno);
#endif
scheduleEpollRebuildLocked();
} else {
// Some other error occurred. This is really weird because it means
// our list of callbacks got out of sync with the epoll set somehow.
// We defensively rebuild the epoll set to avoid getting spurious
// notifications with nowhere to go.
ALOGE("Error removing epoll events for fd %d, errno=%d", fd, errno);
scheduleEpollRebuildLocked();
return -1;
}
}
} // release lock
return 1;
}
3.5 pollOnce
pollOnce方法在MessageQueue中会调用到,主要用于处理Response取出其中的ident,交给pollInner
处理,在pollInner中会因为消息队列为空,或者消息处理时间未到达而阻塞。
mResponse在Looper::pushResponse(int events, const Request& request)
中添加,mResponseIndex在looper对象被创建的时候初始化为0.
int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
int result = 0;
for (;;) {
while (mResponseIndex < mResponses.size()) {
const Response& response = mResponses.itemAt(mResponseIndex++);
int ident = response.request.ident;
if (ident >= 0) {
int fd = response.request.fd;
int events = response.events;
void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - returning signalled identifier %d: "
"fd=%d, events=0x%x, data=%p",
this, ident, fd, events, data);
#endif
if (outFd != NULL) *outFd = fd;
if (outEvents != NULL) *outEvents = events;
if (outData != NULL) *outData = data;
return ident;
}
}
if (result != 0) {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - returning result %d", this, result);
#endif
if (outFd != NULL) *outFd = 0;
if (outEvents != NULL) *outEvents = 0;
if (outData != NULL) *outData = NULL;
return result;
}
result = pollInner(timeoutMillis);
}
}
pollInner使用了Linux内核的epoll机制,调用epoll_wait监听mEpollFd上的事件,若没有事件则等待,wait的时间则是由参数timeoutMillis决定。
在for循环中,首先是取出事件描述符,对描述符为mWakeEventFd的读事件调用awoken方法(也就是对handler或者native looper通过sendMessageAtTime发送过来的消息调用该方法,awoken方法中,会读取mWakeEventFd中的内容,也就是之前写入的“1”),然后对其他由addfd添加进来的描述符,取出其request信息,通过pushResponse存储到mResponse中
在Done后面处理具体的消息:首先是处理Native层存储在mMessageEnvelopes中消息,处理方法是获取mMessageEnvelope中存储的该消息的handler,调用handler的handlerMessage方法。Handler Looper MessageQueue之Handler中分析,并把当前最后一条消息的执行时间赋值给mNextMessageUptime。
接着处理mResponses中的消息。调用其Request中存储的callback回调方法handleEvent处理消息。
int Looper::pollInner(int timeoutMillis) {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - waiting: timeoutMillis=%d", this, timeoutMillis);
#endif
// Adjust the timeout based on when the next message is due.
if (timeoutMillis != 0 && mNextMessageUptime != LLONG_MAX) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
int messageTimeoutMillis = toMillisecondTimeoutDelay(now, mNextMessageUptime);
if (messageTimeoutMillis >= 0
&& (timeoutMillis < 0 || messageTimeoutMillis < timeoutMillis)) {
timeoutMillis = messageTimeoutMillis;
}
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - next message in %" PRId64 "ns, adjusted timeout: timeoutMillis=%d",
this, mNextMessageUptime - now, timeoutMillis);
#endif
}
// Poll.
int result = POLL_WAKE;
mResponses.clear();
mResponseIndex = 0;
// We are about to idle.
mPolling = true;
struct epoll_event eventItems[EPOLL_MAX_EVENTS];
int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
// No longer idling.
mPolling = false;
// Acquire lock.
mLock.lock();
// Rebuild epoll set if needed.
if (mEpollRebuildRequired) {
mEpollRebuildRequired = false;
rebuildEpollLocked();
goto Done;
}
// Check for poll error.
if (eventCount < 0) {
if (errno == EINTR) {
goto Done;
}
ALOGW("Poll failed with an unexpected error, errno=%d", errno);
result = POLL_ERROR;
goto Done;
}
// Check for poll timeout.
if (eventCount == 0) {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - timeout", this);
#endif
result = POLL_TIMEOUT;
goto Done;
}
// Handle all events.
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - handling events from %d fds", this, eventCount);
#endif
for (int i = 0; i < eventCount; i++) {
int fd = eventItems[i].data.fd;
uint32_t epollEvents = eventItems[i].events;
if (fd == mWakeEventFd) {
if (epollEvents & EPOLLIN) {
awoken();
} else {
ALOGW("Ignoring unexpected epoll events 0x%x on wake event fd.", epollEvents);
}
} else {
ssize_t requestIndex = mRequests.indexOfKey(fd);
if (requestIndex >= 0) {
int events = 0;
if (epollEvents & EPOLLIN) events |= EVENT_INPUT;
if (epollEvents & EPOLLOUT) events |= EVENT_OUTPUT;
if (epollEvents & EPOLLERR) events |= EVENT_ERROR;
if (epollEvents & EPOLLHUP) events |= EVENT_HANGUP;
pushResponse(events, mRequests.valueAt(requestIndex));
} else {
ALOGW("Ignoring unexpected epoll events 0x%x on fd %d that is "
"no longer registered.", epollEvents, fd);
}
}
}
Done: ;
// Invoke pending message callbacks.
mNextMessageUptime = LLONG_MAX;
while (mMessageEnvelopes.size() != 0) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);
if (messageEnvelope.uptime <= now) {
// Remove the envelope from the list.
// We keep a strong reference to the handler until the call to handleMessage
// finishes. Then we drop it so that the handler can be deleted *before*
// we reacquire our lock.
{ // obtain handler
sp<MessageHandler> handler = messageEnvelope.handler;
Message message = messageEnvelope.message;
mMessageEnvelopes.removeAt(0);
mSendingMessage = true;
mLock.unlock();
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
ALOGD("%p ~ pollOnce - sending message: handler=%p, what=%d",
this, handler.get(), message.what);
#endif
handler->handleMessage(message);
} // release handler
mLock.lock();
mSendingMessage = false;
result = POLL_CALLBACK;
} else {
// The last message left at the head of the queue determines the next wakeup time.
mNextMessageUptime = messageEnvelope.uptime;
break;
}
}
// Release lock.
mLock.unlock();
// Invoke all response callbacks.
for (size_t i = 0; i < mResponses.size(); i++) {
Response& response = mResponses.editItemAt(i);
if (response.request.ident == POLL_CALLBACK) {
int fd = response.request.fd;
int events = response.events;
void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
ALOGD("%p ~ pollOnce - invoking fd event callback %p: fd=%d, events=0x%x, data=%p",
this, response.request.callback.get(), fd, events, data);
#endif
// Invoke the callback. Note that the file descriptor may be closed by
// the callback (and potentially even reused) before the function returns so
// we need to be a little careful when removing the file descriptor afterwards.
int callbackResult = response.request.callback->handleEvent(fd, events, data);
if (callbackResult == 0) {
removeFd(fd, response.request.seq);
}
// Clear the callback reference in the response structure promptly because we
// will not clear the response vector itself until the next poll.
response.request.callback.clear();
result = POLL_CALLBACK;
}
}
return result;
}
void Looper::awoken() {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ awoken", this);
#endif
uint64_t counter;
TEMP_FAILURE_RETRY(read(mWakeEventFd, &counter, sizeof(uint64_t)));
}
3.6 Looper中的loop方法
该方法位于frameworks/base/core/java/android/os/Looper.java
public static void loop {
final Looper me = myLooper(); //获取ThreadLocal中存储的looper
if (me == null) { //若不存在looper,抛出异常。
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;//looper中自带一个MessageQueue。
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {//消息循环的开始
Message msg = queue.next(); //从MessageQueue中获取一条消息,可能会阻塞。
if (msg == null) { //如果没有消息则线程退出。
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
//调用Message中的taget(也就是Handler),分发消息,这个target在构建Message对象的时候设置进来。
msg.target.dispatchMessage(msg);
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked(); //回收消息,避免资源浪费
}
}
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
首先,使用myLooper方法,获取当前线程中存储的sThreadLocal中的looper的对象,并且检查是否初始化。然后从looper中获取MessageQueue,在无线循环中轮训messageQueue,处理消息