1 概述
Executor
框架是一个根据一组执行策略调用,调度,执行和控制的异步任务的框架。其位于java.util.concurrent
包中。它提供了一种将”任务提交”与”任务运行”分离开来的机制。
线程池有两个作用:
1、避免thread不断创建销毁的开销;
2、通过使用线程池可以限制这些任务所消耗的资源,比如最大线程数,最大的消息缓冲池等,已达到最佳的运行效果。
其包含了一系列的接口,和实现类,工具类等,实现了一套线程池机制,线程池包含一个任务队列和多个线程。首先添加任务进任务队列,然后在启动规定个数的线程执行队列中的任务,剩下的任务则在队列中排队等待。线程池有空闲线程的时候会从队列头部取一个新的任务执行。
2 Executor
Java里面线程池的顶级接口是Executor,定义了一个接口,表示可以执行Runnable方法。
public interface Executor {
void execute(Runnable command);
}
3 ExecutorService
ExecutorService接口扩展了Executor接口,增加了很多线程池相关方法,即一些生命周期管理的方法。ExecutorService的生命周期有三种状态:运行,关闭,终止。ExecutorService创建时处于运行状态。当调用ExecutorService.shutdown()后,处于关闭状态,isShutdown()方法返回true。这时,不应该再想Executor中添加任务,所有已添加的任务执行完毕后,Executor处于终止状态,isTerminated()返回true。
其中shutdown和shutdownNow的区别是,前者拒绝添加新任务进来,但是会执行完当前正在执行的和队列中的线程,后者是直接结束所有正在运行的线程,删除等待队列中的线程。
public interface ExecutorService extends Executor {
void shutdown();
List<Runnable> shutdownNow();
boolean isShutdown();
boolean isTerminated();
//阻塞在这个方法,等待所有子线程执行结束后继续运行后面的代码。
boolean awaitTermination(long timeout, TimeUnit unit)
throws InterruptedException;
<T> Future<T> submit(Callable<T> task);
<T> Future<T> submit(Runnable task, T result);
Future<?> submit(Runnable task);
}
ExecutoreService提供了submit()方法,传递一个Callable,或Runnable,返回Future。如果ExecutoreService后台线程池还没有完成Callable的运行,这调用返回Future对象的get()方法,会阻塞直到运行完成。
4、ThreadPoolExecutor
ExecutorService接口的默认实现类,继承了AbstractExecutorService。
4.1 构造方法如下:
private final BlockingQueue<Runnable> workQueue; // 阻塞队列
private final ReentrantLock mainLock = new ReentrantLock(); // 互斥锁
private final HashSet<Worker> workers = new HashSet<Worker>();// 线程集合.一个Worker对应一个线程
private final Condition termination = mainLock.newCondition();// 终止条件
private int largestPoolSize; // 线程池中线程数量曾经达到过的最大值。
private long completedTaskCount; // 已完成任务数量
private volatile ThreadFactory threadFactory; // ThreadFactory对象,用于创建线程。
private volatile RejectedExecutionHandler handler;// 拒绝策略的处理句柄
private volatile long keepAliveTime; // 线程池维护的线程所允许的空闲时间,超过这个时间的线程若无任务处理,将会被销毁。
private volatile boolean allowCoreThreadTimeOut;
private volatile int corePoolSize; // 线程池维护线程的最小数量,哪怕是空闲的。
private volatile int maximumPoolSize; // 线程池维护的最大线程数量
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), defaultHandler);
}
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
threadFactory, defaultHandler);
}
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
RejectedExecutionHandler handler) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), handler);
}
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
4.2参数分析:
corePoolSize与maximumPoolSize 前者是最少线程数,后者是最大线程数。
若执行execute方法添加新任务:
1.若当前线程数小于corePoolSize的时候,则直接创建新线程执行;
2.若当前线程数等于corePoolSize,且workQueue未满,则请求添加到workQueue中排队等待。
3.若当前线程数等于corePoolSize小于maximumPoolSize,且workQueue已满,则创建新线程处理任务。
4.若当前线程数等于maximumPoolSize,且workQueue已满,则通过handler所指定的策略来处理新请求。具体策略,参考后面RejectedExecutionHandler
5.若将maximumPoolSize 设置为基本的无界值(如 Integer.MAX_VALUE),则允许池适应任意数量的并发任务。
6.当线程数大于corePoolSize的时候,多余的线程会等待keepAliveTime长的时间,如果无请求可处理就自行销毁。
BlockingQueue BlockingQueue是一个接口,规定了当队列为空或者已满的时候,需要阻塞以等待生产者/消费者协同操作并唤醒线程。该缓冲队列的长度决定了能够缓冲的最大数量。
public interface BlockingQueue<E> extends Queue<E> { boolean add(E e); boolean offer(E e); void put(E e) throws InterruptedException; boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException; E take() throws InterruptedException; E poll(long timeout, TimeUnit unit) throws InterruptedException; int remainingCapacity(); boolean remove(Object o); public boolean contains(Object o); int drainTo(Collection<? super E> c); int drainTo(Collection<? super E> c, int maxElements); }
缓冲队列有三种通用策略:
1、 直接提交: 例如SynchronousQueue,此队列是将任务直接提交给线程,而不保持它们。若不存在可用于立即运行的线程,则创建一个新线程。此策略可避免在处理可能具有内部依赖性的请求集时出现锁。
2、无界队列:例如,不具有预定义容量的LinkedBlockingQueue,此此队列将导致在所有corePoolSize 线程都忙时新任务在队列中等待。maximumPoolSize失去意义,因为最大线程数就是corePoolSize。
3、有界队列:如 ArrayBlockingQueue,有助于防止资源耗尽
ThreadFactory 创建线程的工厂。
public interface ThreadFactory { Thread newThread(Runnable r); }
1.默认使用Executors.defaultThreadFactory() 创建线程,设置Daemon为false,设置优先级为Thread.NORM_PRIORITY。
public static ThreadFactory defaultThreadFactory() { return new DefaultThreadFactory(); } static class DefaultThreadFactory implements ThreadFactory { private static final AtomicInteger poolNumber = new AtomicInteger(1); private final ThreadGroup group; private final AtomicInteger threadNumber = new AtomicInteger(1); private final String namePrefix; DefaultThreadFactory() { SecurityManager s = System.getSecurityManager(); group = (s != null) ? s.getThreadGroup() : Thread.currentThread().getThreadGroup(); namePrefix = "pool-" + poolNumber.getAndIncrement() + "-thread-"; } public Thread newThread(Runnable r) { Thread t = new Thread(group, r, namePrefix + threadNumber.getAndIncrement(), 0); if (t.isDaemon()) t.setDaemon(false); if (t.getPriority() != Thread.NORM_PRIORITY) t.setPriority(Thread.NORM_PRIORITY); return t; } }
2.通过提供不同的 ThreadFactory,可以改变线程的名称、线程组、优先级、守护进程状态等等
3.若从newThread返回null,则ThreadFactory未能创建线程,但执行程序将继续运行,不过不能执行任何任务。
RejectedExecutionHandler: 当Executor已经关闭(即执行了executorService.shutdown()方法后),并且满足corePoolSize与maximumPoolSize中第4时,新任务被拒绝的策略。
public interface RejectedExecutionHandler { void rejectedExecution(Runnable r, ThreadPoolExecutor executor); }
目前有以下4种预定义策略:
1、ThreadPoolExecutor.AbortPolicy 处理程序遭到拒绝将抛出运行时 RejectedExecutionException,默认使用的是此策略。
public static class AbortPolicy implements RejectedExecutionHandler { public AbortPolicy() { } public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { throw new RejectedExecutionException("Task " + r.toString() + " rejected from " + e.toString()); } }
2、ThreadPoolExecutor.CallerRunsPolicy 线程调用运行该任务的execute本身。此策略提供简单的反馈控制机制,能够减缓新任务的提交速度
public static class CallerRunsPolicy implements RejectedExecutionHandler { public CallerRunsPolicy() { } public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { if (!e.isShutdown()) { r.run(); } } }
3、ThreadPoolExecutor.DiscardPolicy 不能执行的任务将被删除;
public static class DiscardPolicy implements RejectedExecutionHandler { public DiscardPolicy() { } public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { } }
4、ThreadPoolExecutor.DiscardOldestPolicy 如果执行程序尚未关闭,则位于工作队列头部的任务将被删除,然后重试执行程序(如果再次失败,则重复此过程)
public static class DiscardOldestPolicy implements RejectedExecutionHandler { public DiscardOldestPolicy() { } public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { if (!e.isShutdown()) { e.getQueue().poll(); e.execute(r); } } }
4.3 execute
execute方法是添加新任务的时候调用的方法,内部执行了addWorker方法,来添加一个任务或者执行了reject方法来调用拒绝策略。
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
//这里获取了当前线程大小状态的存储信息,在通过workerCountOf获取运行中线程数量。
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
4.4 addWorker方法
经过一系列的判断后,new了一个Worker,然后添加进队列然后执行起来。
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
4.5 worker线程
worker自己实现了Runnable,它自己维护了执行它的线程对象thead,又维护了一个Runnable对象firstTask(任务对象)
private final class Worker extends AbstractQueuedSynchronizer implements Runnable
{
private static final long serialVersionUID = 6138294804551838833L;
final Thread thread;
Runnable firstTask;
volatile long completedTasks;
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
/** Delegates main run loop to outer runWorker. */
public void run() {
runWorker(this);
}
// Lock methods
//
// The value 0 represents the unlocked state.
// The value 1 represents the locked state.
protected boolean isHeldExclusively() {
return getState() != 0;
}
protected boolean tryAcquire(int unused) {
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
}
protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
}
public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); }
void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}
4.6 runWorker方法
用于执行工作线程,其中worker也是一个封装类,实现了Runnable接口。
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
4 ScheduledExecutorService
此service接口是为了支持时间可控的任务执行而设计,其中包括:固定延迟执行,周期性执行等,和Timer/TimerTask类似。
public interface ScheduledExecutorService extends ExecutorService {
public ScheduledFuture<?> schedule(Runnable command,
long delay, TimeUnit unit);
public <V> ScheduledFuture<V> schedule(Callable<V> callable,
long delay, TimeUnit unit);
public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,
long initialDelay,
long period,
TimeUnit unit);
public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command,
long initialDelay,
long delay,
TimeUnit unit);
}
6、ScheduledThreadPoolExecutor
ScheduledExecutorService接口的默认实现类,并且继承了ThreadPoolExecutor。
7、Executors
Executor线程池的工厂方法,提供了一套创建各种线程池的机制。包括如下
固定大小线程池newFixedThreadPool,也就是无界的线程池,因为LinkedBlockingQueue是无界的
public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(), threadFactory); }
单线程线程池newSingleThreadExecutor
public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())); } public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(), threadFactory)); }
无界线程池,可以进行自动线程回收newCachedThreadPool
其中用到了SynchronousQueue:每个插入操作必须等待另一个线程的对应移除操作完成。(就是缓冲区为1的生产者消费者模式)public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>()); } public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>(), threadFactory); }
newSingleThreadScheduledExecutor 创建一个单线程执行程序,它可以定期执行命令。
public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
return new DelegatedScheduledExecutorService
(new ScheduledThreadPoolExecutor(1));
}
public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) {
return new DelegatedScheduledExecutorService
(new ScheduledThreadPoolExecutor(1, threadFactory));
}
- newScheduledThreadPool 定长线程池,支持定时的周期执行任务,相当于timer。
与timer区别是:timer只能创建唯一的线程来执行所有timer任务。如果一个TimerTask耗时多,会影响其他TimerTask的时效准确性。Timer对异常支持不好。
其中scheduleAtFixedRate方法可以指定执行的周期等参数
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
return new ScheduledThreadPoolExecutor(corePoolSize);
}
public static ScheduledExecutorService newScheduledThreadPool(
int corePoolSize, ThreadFactory threadFactory) {
return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
}
8、CompletionService 完成服务
public interface CompletionService<V> {
Future<V> submit(Callable<V> task);
Future<V> submit(Runnable task, V result);
Future<V> take() throws InterruptedException;
Future<V> poll();
Future<V> poll(long timeout, TimeUnit unit) throws InterruptedException;
}
其中poll方法不会等待,而是返回null,而take方法会等待。
9、ExecutorCompletionService
CompletionService方法的实现类。在构造方法中提供了一个LinkedBlockingQueue。
public ExecutorCompletionService(Executor executor) {
if (executor == null)
throw new NullPointerException();
this.executor = executor;
this.aes = (executor instanceof AbstractExecutorService) ?
(AbstractExecutorService) executor : null;
this.completionQueue = new LinkedBlockingQueue<Future<V>>();
}
public ExecutorCompletionService(Executor executor,
BlockingQueue<Future<V>> completionQueue) {
if (executor == null || completionQueue == null)
throw new NullPointerException();
this.executor = executor;
this.aes = (executor instanceof AbstractExecutorService) ?
(AbstractExecutorService) executor : null;
this.completionQueue = completionQueue;
}
10、Future
public interface Future<V> {
boolean cancel(boolean mayInterruptIfRunning);// 试图取消对此任务的执行
boolean isCancelled(); // 如果在任务正常完成前将其取消,则返回 true
boolean isDone(); // 如果任务已完成,则返回 true
// 如有必要,等待计算完成,然后获取其结果
V get() throws InterruptedException, ExecutionException;
// 如有必要,最多等待为使计算完成所给定的时间之后,获取其结果(如果结果可用)。
V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}
Future接口表示异步任务,是还没有完成的任务给出的未来结果。可以用来判断任务是否完成,用来中断任务,以及获取任务的执行结果。
get()方法: 等待Callable结束并获取它的执行结果,没有超时参数的get方法会一直阻塞在这里等待,直到任务结束,有timeout参数的,在等待timeout后,如果还没有成功,则返回null,且抛出TimeOutException,而不是继续执行后面的代码。
cancel(boolean mayInterruptIfRunning)方法: 试图取消任务,若取消成功返回true,取消失败返回false(取消已完成的任务也会返回false)。参数mayInterruptIfRunning表示是否允许取消正在执行却没有执行完毕的任务.若任务正在执行,且参数mayInterruptIfRunning为true,则必定返回false。
isCancelled()方法:表示任务是否被取消成功,若任务正常完成前被取消成功,则返回true,否则false
isDone(): 比奥斯任务是否已经完成,已经完成返回true
11 FutureTask
FutureTask实现了RunnableFuture接口,RunnableFuture接口继承了Future和Runnable接口。故FutureTask既可以当做线程执行,也可以当做Future得到Callable的返回值。如果不想分支线程阻塞主线程,又想取得分支线程的执行结果,就用FutureTask
public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW; // ensure visibility of callable
}
public FutureTask(Runnable runnable, V result) {
this.callable = Executors.callable(runnable, result);
this.state = NEW; // ensure visibility of callable
}
12、Callable
public interface Callable<V> {
V call() throws Exception;
}
Callable也是一种任务,类似Runnable,区别在于:
Runnable没有返回值,无法抛出经过检查的异常;Callable有返回值而且当获取返回结果时可能会抛出异常。
Callable 的 call()方法只能通过 ExecutorService 的 submit(Callable task) 方法来执行,并且返回一个表示任务等待完成的Future,如果 Future 的返回尚未完成,则 Future.get()方法会阻塞等待,直到 Future 完成返回,也可以通过调用 isDone()方法判断 Future 是否完成了返回。但是Runnable通过 ExecutorService 的 submit(Callable task) 方法来执行,返回的Future的get方法返回的是null。
13、示例
try {
Future<String> future1 = es.submit(task1);
System.out.println("task1 " + future1.get());
System.out.println("task1 isDone " + future1.isDone());
future2 = es.submit(task2);
System.out.println("task2 " + future2.get(5, TimeUnit.SECONDS));
}catch(TimeoutException e){
System.out.println("+++task2 cancel " + future2.cancel(true));
System.out.println("+++task2 isCanceled "+ future2.isCancelled());
Future<String> future3 = es.submit(task3);
try {
System.out.println("+++task3 " + future3.get());
} catch (InterruptedException | ExecutionException e1) {
e1.printStackTrace();
}
}
示例源码见github