Adversarial Learning for Semi-Supervised Semantic Segmentation
本文核心要点如下
- SegNet as Generator
- Discriminator: use a FCN(HxWxC -> HxWx1)
- Semi-supervised: 对于unlabeled data,
- adv loss, (fix D, maximize D(S(X)))
- self-taught, 使用D的结果作为psedo mask,去训练SegNet
D
FCN, output the probability of mask for each location
train use labeled data
sum over all position
G(S)
labeled data: cross-entropy loss(with gt), adv loss
unlaeled data: semi loss(with psedo gt), adv loss
hyperpara的没有更深入的分析