
科研
文章平均质量分 67
feitianlzk
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
《Handling Cold-Start Problem in Review Spam Detection by Jointly Embedding Texts and Behaviors》阅读笔记
《Handling Cold-Start Problem in Review Spam Detection by Jointly Embedding Texts and Behaviors》阅读笔记摘录原创 2017-09-06 21:35:33 · 646 阅读 · 1 评论 -
Reinforcement Learning for Relation Classification from Noisy Data阅读笔记
Reinforcement Learning for Relation Classification from Noisy Data阅读笔记转载 2017-11-30 23:02:53 · 2329 阅读 · 0 评论 -
垃圾评论检测
Opinion Spam DetectionProblemorigin: Positive opinions often mean profits and fames for businesses and individualslead to: promote or to discredit some target products, services, organizations, indi原创 2018-01-10 22:40:44 · 3357 阅读 · 2 评论 -
The secret ingredients of word2vec 概要整理
源自Sebastian Ruder的博文The secret ingredients of word2vecQuestionsQ1. Are embeddings superior to distributional methods?With the right hyperparameters, no approach has a consistent advantage over转载 2018-01-20 23:08:26 · 227 阅读 · 0 评论 -
Learning to learn
字体数据集 imagenet几个应用few shot classification (image) + RL + 推荐(cold start)原创 2018-03-05 21:57:12 · 496 阅读 · 0 评论 -
ReadingList
优先Few-shot Autoregressive Density Estimation: Towards Learning to Learn DistributionsMAMLSummary MAML: meta-learn an initial conditionLSTM optimization: meta-learn a good initial cond...原创 2018-04-15 18:36:34 · 674 阅读 · 0 评论 -
Transductive Unbiased Embedding for Zero-Shot Learning阅读笔记
Transductive Unbiased Embedding for Zero-Shot LearningSummaryPROubias term: 在Loss添加一个针对未知类的loss, 部分抑制了zero shot天生倾向于带label数据的问题巧妙的数据利用,虽然target dataset没有用label(图片文字对应关系),但是用了label的文字embedd...原创 2018-04-11 13:39:45 · 1427 阅读 · 2 评论 -
Zero-Shot Visual Recognition using Semantics-Preserving Adversarial Embedding Networks 阅读笔记
Zero-Shot Visual Recognition using Semantics-Preserving Adversarial Embedding Networks收获多个网络如何组合? 相同目标collaborative, 不同目标adversarialtodo查看groud truth class embedding查看SAEConclusio...原创 2018-04-17 20:21:11 · 768 阅读 · 0 评论 -
Adversarial Learning for Semi-Supervised Semantic Segmentation(BMVC2018)
Adversarial Learning for Semi-Supervised Semantic Segmentation本文核心要点如下SegNet as GeneratorDiscriminator: use a FCN(HxWxC -> HxWx1)Semi-supervised: 对于unlabeled data, adv loss, (fix D, maximi...原创 2018-08-04 17:06:28 · 1080 阅读 · 0 评论