bayes.py
from numpy import *
def loadDataSet():
postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0, 1, 0, 1, 0, 1] # 1 is abusive, 0 not
return postingList, classVec
#去重
def createVocabList(dataSet):
vocabSet = set([]) # create empty set
for document in dataSet:
vocabSet = vocabSet | set(document) # union of the two sets
return list(vocabSet)
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else:
print
"the word: %s is not in my Vocabulary!" % word
return returnVec
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec
# def trainNB0(trainMatrix,trainCategory):
# numTrainDocs = len(trainMatrix)
# numWords = len(trainMatrix[0])
# pAbusive = sum(trainCategory)/float(numTrainDocs)
# p0Num = zeros(numWords); p1Num = zeros(numWords) #change to ones()
# #p0Denom = 2.0; p1Denom = 2.0 #change to 2.0
# p0Denom = 0.0;
# p1Denom = 0.0
# for i in range(numTrainDocs):
# if trainCategory[i] == 1:
# p1Num += trainMatrix[i]
# p1Denom += sum(trainMatrix[i])
# else:
# p0Num += trainMatrix[i]
# p0Denom += sum(trainMatrix[i])
# p1Vect = (p1Num/p1Denom) #change to log()
# p0Vect = (p0Num/p0Denom) #change to log()
# return p0Vect,p1Vect,pAbusive
def trainNB0(trainMatrix,trainCategory):
numTrainDocs = len(trainMatrix) #6
numWords = len(trainMatrix[0]) #32
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = ones(numWords); p1Num = ones(numWords) #change to ones()
p0Denom = 2.0; p1Denom = 2.0 #change to 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = log(p1Num/p1Denom) #change to log()
p0Vect = log(p0Num/p0Denom) #change to log()
return p0Vect,p1Vect,pAbusive
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + log(pClass1)
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1>p0:
return 1
else:
return 0
def testingNB():
listOPosts, listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
#print(myVocabList)
# print(setOfWords2Vec(myVocabList, listPost[0]))
# print(setOfWords2Vec(myVocabList, listPost[3]))
trainMat = []
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))
print(p0V)
print(p1V)
print(pAb)
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
testEntry=['stupid','garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
def textParse(bigString):
import re
listOfTokens = re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
def spamTest():
docList=[]; classList=[]; fullText=[]
for i in range(1,26):
wordList = textParse(open('email/spam/%d.txt' %i).read())
docList.append(wordList)
fullText.append(wordList)
classList.append(1)
wordList = textParse(open('email/ham/%d.txt' %i).read())
docList.append(wordList)
fullText.append(wordList)
classList.append(0)
vocabList = createVocabList(docList)
trainingSet = list(range(50)); testSet = []
for i in range(10):
randIndex = int(random.uniform(0, len(trainingSet)))
testSet.append(trainingSet[randIndex]) #随机选择10个放入测试集,剩余的作为训练集
del(trainingSet[randIndex])
trainMat=[]; trainClasses=[]
for docIndex in trainingSet:
trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam = trainNB0(array(trainMat), array(trainClasses))
errorCount = 0
for docIndex in testSet:
wordVector = setOfWords2Vec(vocabList, docList[docIndex])
if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
errorCount += 1
print('the error doc is: ', docList[docIndex])
print('the error rate is: ', float(errorCount)/len(testSet))
#testingNB()
#spamTest()
def calcMostFreq(vocabList,fullText):
import operator
freqDict = {}
for token in vocabList:
freqDict[token]=fullText.count(token)
sortedFreq = sorted(freqDict.items(), key=operator.itemgetter(1), reverse=True)
return sortedFreq[:30]
def stopWords():
import re
wordList = open('stopword.txt').read() # see http://www.ranks.nl/stopwords
listOfTokens = re.split(r'\W*', wordList)
return [tok.lower() for tok in listOfTokens]
print ('read stop word from \'stopword.txt\':',listOfTokens)
return listOfTokens
def localWords(feed1,feed0):
import feedparser
docList=[]; classList = []; fullText =[]
print ('feed1 entries length: ', len(feed1['entries']), '\nfeed0 entries length: ', len(feed0['entries']))
minLen = min(len(feed1['entries']),len(feed0['entries']))
print ('\nmin Length: ', minLen)
for i in range(minLen):
wordList = textParse(feed1['entries'][i]['summary'])
print ('\nfeed1\'s entries[',i,']\'s summary - ','parse text:\n',wordList)
docList.append(wordList)
fullText.extend(wordList)
classList.append(1) #NY is class 1
wordList = textParse(feed0['entries'][i]['summary'])
print ('\nfeed0\'s entries[',i,']\'s summary - ','parse text:\n',wordList)
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)#create vocabulary
print ('\nVocabList is ',vocabList)
print ('\nRemove Stop Word:')
stopWordList = stopWords()
for stopWord in stopWordList:
if stopWord in vocabList:
vocabList.remove(stopWord)
print ('Removed: ',stopWord)
# top30Words = calcMostFreq(vocabList,fullText) #remove top 30 words
# print ('\nTop 30 words: ', top30Words)
# for pairW in top30Words:
# if pairW[0] in vocabList:
# vocabList.remove(pairW[0])
# print ('\nRemoved: ',pairW[0])
trainingSet = list(range(2*minLen)); testSet=[] #create test set
print ('\n\nBegin to create a test set: \ntrainingSet:',trainingSet,'\ntestSet',testSet)
for i in range(5):
randIndex = int(random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
print ('random select 5 sets as the testSet:\ntrainingSet:',trainingSet,'\ntestSet',testSet)
trainMat=[]; trainClasses = []
for docIndex in trainingSet:#train the classifier (get probs) trainNB0
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
print ('\ntrainMat length:',len(trainMat))
print ('\ntrainClasses',trainClasses)
print ('\n\ntrainNB0:')
p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
#print '\np0V:',p0V,'\np1V',p1V,'\npSpam',pSpam
errorCount = 0
for docIndex in testSet: #classify the remaining items
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
classifiedClass = classifyNB(array(wordVector),p0V,p1V,pSpam)
originalClass = classList[docIndex]
result = classifiedClass != originalClass
if result:
errorCount += 1
print ('\n',docList[docIndex],'\nis classified as: ',classifiedClass,', while the original class is: ',originalClass,'. --',not result)
print ('\nthe error rate is: ',float(errorCount)/len(testSet))
return vocabList,p0V,p1V
def testRSS():
import feedparser
ny=feedparser.parse('http://www.nasa.gov/rss/dyn/image_of_the_day.rss')
sf=feedparser.parse('http://sports.yahoo.com/nba/teams/hou/rss.xml')
vocabList,pSF,pNY = localWords(ny,sf)
def testTopWords():
import feedparser
ny=feedparser.parse('http://www.nasa.gov/rss/dyn/image_of_the_day.rss')
sf=feedparser.parse('http://sports.yahoo.com/nba/teams/hou/rss.xml')
getTopWords(ny,sf)
def getTopWords(ny,sf):
import operator
vocabList,p0V,p1V=localWords(ny,sf)
topNY=[]; topSF=[]
for i in range(len(p0V)):
if p0V[i] > -6.0 : topSF.append((vocabList[i],p0V[i]))
if p1V[i] > -6.0 : topNY.append((vocabList[i],p1V[i]))
sortedSF = sorted(topSF, key=lambda pair: pair[1], reverse=True)
print ("SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**")
for item in sortedSF:
print (item[0])
sortedNY = sorted(topNY, key=lambda pair: pair[1], reverse=True)
print ("NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**")
for item in sortedNY:
print (item[0])
def test42():
print ('\n*** Load DataSet ***')
listOPosts,listClasses = loadDataSet()
print ('List of posts:\n', listOPosts)
print ('List of Classes:\n', listClasses)
print ('\n*** Create Vocab List ***')
myVocabList = createVocabList(listOPosts)
print ('Vocab List from posts:\n', myVocabList)
print ('\n*** Vocab show in post Vector Matrix ***')
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(bagOfWords2Vec(myVocabList,postinDoc))
print ('Train Matrix:\n', trainMat)
print ('\n*** Train ***')
p0V,p1V,pAb = trainNB0(trainMat,listClasses)
print ('p0V:\n',p0V)
print ('p1V:\n',p1V)
print ('pAb:\n',pAb)
#testRSS()
testTopWords()
本文详细介绍了一种基于概率的文本分类方法——朴素贝叶斯分类器。通过具体实例,展示了如何从原始文本中构建词汇表,使用词袋模型进行特征提取,并训练分类器以识别文本类别。此外,还探讨了垃圾邮件过滤的应用,以及如何处理英文RSS源的本地化词汇,为读者提供了一个全面理解朴素贝叶斯算法在文本分类中应用的视角。
1391

被折叠的 条评论
为什么被折叠?



