codeforces 925 D

Divisible Pairs

题面翻译

你有两个整数 x,yx,yx,y 和一个长为 nnn 的数组 aaa

你需要求出有多少个正整数对 (i,j)(i,j)(i,j) 满足:

  • 1 <= i , j <= n
  • ai+aja_i + a_jai+aj 可被 xxx 整除
  • ai−aja_i - a_jaiaj 可被 yyy 整除

ttt 组数据,1≤t≤104,1≤n≤2×105,∑n≤2×105,1≤ai,x,y≤1091 \le t \le 10^4 ,1 \le n \le 2 \times 10^5,\sum n \le 2 \times 10^5,1 \le a_i,x,y \le 10^91t104,1n2×105,n2×105,1ai,x,y109

请添加图片描述

样例 #1

样例输入 #1

7
6 5 2
1 2 7 4 9 6
7 9 5
1 10 15 3 8 12 15
9 4 10
14 10 2 2 11 11 13 5 6
9 5 6
10 7 6 7 9 7 7 10 10
9 6 2
4 9 7 1 2 2 13 3 15
9 2 3
14 6 1 15 12 15 8 2 15
10 5 7
13 3 3 2 12 11 3 7 13 14

样例输出 #1

2
0
1
3
5
7
0

请添加图片描述
对于求对数的问题思考方法,首先是要看一看数据范围是2e5 ,那么肯定有一些数能用相同的方式表示出来,因为不可能挨个配对,否则就会超时,由于第二三条可以得出来,ai % y == aj % y, ((ai % x) + (aj % x)) % x = =0 其实就是ai % x + aj % x = = x,
推导过程如下
请添加图片描述
请添加图片描述
请添加图片描述
这样之后只需要分两类讨论就可以了
首先,我们值需要讨论x - ai % x 是否ai % x
如果等于那么我们只要记录[x - ai % x][ai % y], 和[ai % x][ai % y] ,的个数,设为a, b,每个之间都能组成一对,那么就是a * b
否则,因为自己不能与自己一对,所以,是b * (b - 1);
这样你会发现答案不是对的,因为我们记录某一个ai 与 aj 配对的时候也记录了aj 与ai配对,答案多记了一倍,那么最后除以二就是答案。

下面展示一些 内联代码片

#include<bits/stdc++.h>
using namespace std;
const int N = 2e5 + 5;
typedef long long ll;
 
int main() {
	int t;
	cin >> t;
	while(t --)
	{
		int n ;
		cin >> n;
		int x, y;
		cin >> x >> y;
		vector<int>arr(n);
		map<pair<int ,int >,int>da;
		for(int i = 0;i <  n;i ++)
		{
			cin >> arr[i];
			da[{arr[i]%x,arr[i] % y}]++;
		}
		ll ans = 0;
		for(auto &[a ,b]:da)
		{
			int z1 = x - a.first,z2 = a.second;
			z1 %= x,z2%= y;
			if(a.first != z1)ans += (ll)da[{z1%x,z2 %y}] * b;
			else {
				ans += (ll)b *(b - 1);
			}
		}
		ans /= 2;
		cout << ans << endl;
	}
	return 0;
}
### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值