import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
np.random.seed(123)
#进行初始化
X ,y_true = make_blobs(n_samples=1000,centers=2)
# 👆从make_blobs中取了1000个样本点,聚类中心有2个,即分为两簇,用于训练
fig = plt.figure(figsize=(8,6))
plt.scatter(X[:,0],X[:,1],c=y_true)
plt.title("Dataset")
plt.xlabel("First feature")
plt.ylabel("Second feature")
plt.show()
#使y向量由行向量重塑为列向量
y_true = y_true[:,np.newaxis]
Python实现Logistic回归
最新推荐文章于 2024-09-13 20:56:55 发布