Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and
1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end
position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6题意:已知若干组数,对于每一组数,求和最大的子序列,输出最大和,并输出子序列的起末位置;代码:#include<stdio.h> int main() { int a[100010],i,j,sum,t,p,q,s,k=0,n,maxsum; scanf("%d",&n); while(n--) { scanf("%d",&t); for(i=1;i<=t;i++) scanf("%d",&a[i]); a[0]=1000; //必须定义,因为数组是从下标0开始的; maxsum=a[1]; p=1;q=1;sum=0;s=1; for(i=1;i<=t;i++) { sum+=a[i]; if(maxsum<sum) { maxsum=sum; s=p; q=i; } if(sum<0) { sum=0; p=i+1; } } printf("Case %d:\n",++k); printf("%d %d %d\n",maxsum,s,q); if(n>=1) printf("\n"); } return 0; }