Max Sum

Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
 

Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
 

Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
 

Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
 

Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
题意:已知若干组数,对于每一组数,求和最大的子序列,输出最大和,并输出子序列的起末位置;
代码:
#include<stdio.h>
int main()
{
	int a[100010],i,j,sum,t,p,q,s,k=0,n,maxsum;
	scanf("%d",&n);
	while(n--)
{
	scanf("%d",&t);
		for(i=1;i<=t;i++)
		scanf("%d",&a[i]);
		a[0]=1000; //必须定义,因为数组是从下标0开始的; 
		maxsum=a[1];
		p=1;q=1;sum=0;s=1;
		for(i=1;i<=t;i++)
	   {
		  sum+=a[i];
		  if(maxsum<sum)
		  {
		  	maxsum=sum;
		  	s=p;
		  	q=i;
		  }
		  if(sum<0)  
		  {
		  	sum=0;
		  	p=i+1;
		  }
	   }
	   printf("Case %d:\n",++k);
	   printf("%d %d %d\n",maxsum,s,q);
	   if(n>=1)
	   printf("\n");
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值