RMQ算法(POJ3264)适用于对数据的多次查询
{
<span style="color:#0000ff">RMQ查询区间最值</span>
<span style="color:#0000ff">预处理O(nlog(n)),查询O(1)</span>
<span style="color:#0000ff">x=log2(n)</span>
<span style="color:#0000ff">x一般20就够了 n为1000000。</span>
<span style="color:#0000ff">int dp[MAXN][x];</span>
void RMQ(int n)
{
for(int i=1;i<=n;++i)
RMQ(int n)
{
for(int i=1;i<=n;++i)
dp[i][0]=a[i];//初始化;
for(int j=1;(1<<j)<=n;j++)
{
for(int i = 1; i +(1<<j)-1<=n;i++)
{
dp1[i][j]=min(dp1[i][j-1],dp1[i+(1<<(j-1))][j-1]);
dp2[i][j]=max(dp2[i][j-1],dp2[i+(1<<(j-1))][j-1]);
}
}
}
int rmq(int l, int r)//(给定的查询区间(l, r))
{
int k=(int)(log(r-l+1.0)/log(2.0));
int a1 = min(dp1[l][k], dp1[r - (1<<k) + 1][k]);
int a2 = max(dp2[l][k], dp2[r - (1<<k) + 1][k]);
return a2-a1;
}
(int j=1;(1<<j)<=n;j++)
{
for(int i = 1; i +(1<<j)-1<=n;i++)
{
dp1[i][j]=min(dp1[i][j-1],dp1[i+(1<<(j-1))][j-1]);
dp2[i][j]=max(dp2[i][j-1],dp2[i+(1<<(j-1))][j-1]);
}
}
}
int rmq(int l, int r)//(给定的查询区间(l, r))
{
int k=(int)(log(r-l+1.0)/log(2.0));
int a1 = min(dp1[l][k], dp1[r - (1<<k) + 1][k]);
int a2 = max(dp2[l][k], dp2[r - (1<<k) + 1][k]);
return a2-a1;
}
}