题目
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
解析
其实就是前面一个题目的改变,不过是增加了是否是路障的判断
需要注意的是,可能起点和终点就是路障。同时我们只用了一维数组来存储,而每次并不会求第一列的path值,因为默认为1,这里需要进行判断。代码如下
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
vector<int> path(n);
path[0] = 1 - obstacleGrid[0][0];
for (int i = 0;i<m;i++)
{
if (obstacleGrid[i][0] == 1)
{
path[0] = 0;
}
for (int j = 1;j<n ;j++)
{
if (obstacleGrid[i][j] == 0)
{
path[j] += path[j-1];
}
else
path[j] = 0;
}
}
return path[n-1];
}
};
大神代码如下
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid)
{
const int m = obstacleGrid.size();
const int n = obstacleGrid[0].size();
if (obstacleGrid[0][0] || obstacleGrid[m-1][n-1])
return 0;
vector<int> f(n, 0);
f[0] = obstacleGrid[0][0] ? 0 : 1;
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
f[j] = obstacleGrid[i][j] ? 0 : (j == 0 ? 0 : f[j - 1]) + f[j];
return f[n - 1];
}
};