Fourier Series Intro - Generalized Fourier Series

本文介绍了广义傅立叶级数的概念及其数学原理,包括正交函数系、双正交函数系的性质及应用,展示了如何利用这些性质进行函数展开。


http://mathworld.wolfram.com/GeneralizedFourierSeries.html

Generalized Fourier Series


A generalized Fourier series is a series expansion of a function based on the special properties of acomplete orthogonal system of functions. The prototypical example of such a series is theFourier series, which is based of the biorthogonality of the functionscos(nx) andsin(nx) (which form acomplete biorthogonal system under integration over the range [-pi,pi]. Another common example is theLaplace series, which is a double series expansion based on the orthogonality of thespherical harmonicsY_l^m(theta,phi) overtheta in [0,pi] andphi in [0,2pi].

Given a complete orthogonal system of univariate functions {phi_n(x)} over the intervalR, the functionsphi_n(x) satisfy an orthogonality relationship of the form

 int_Rphi_m(x)phi_n(x)w(x)dx=c_mdelta_(mn)
(1)

over a range R, wherew(x) is aweighting function,c_m are given constants anddelta_(mn) is theKronecker delta. Now consider an arbitrary functionf(x). Write it as a series

 f(x)=sum_(n=0)^inftya_nphi_n(x)
(2)

and plug this into the orthogonality relationships to obtain

 int_Rf(x)phi_n(x)w(x)dx =int_Rsum_(n=0)^inftya_nphi_m(x)phi_n(x)w(x)dx =sum_(n=0)^inftya_nintphi_m(x)phi_n(x)w(x)dx =sum_(n=0)^inftya_nc_mdelta_(mn) =a_nc_n.
(3)

Note that the order of integration and summation has been reversed in deriving the above equations. As a result of these relations, if a series forf(x) of the assumed form exists, its coefficients will satisfy

 a_n=1/(c_n)int_Rf(x)phi_n(x)w(x)dx.
(4)

Given a complete biorthogonal system of univariate functions, the generalized Fourier series takes on a slightly more special form. In particular, for such a system, the functionsf_1(n,x) andf_2(n,x) satisfy orthogonality relationships of the form

int_Rf_1(m,x)f_1(n,x)w(x)dx=c_mdelta_(mn)
(5)
int_Rf_2(m,x)f_2(n,x)w(x)dx=d_mdelta_(mn)
(6)
int_Rf_1(m,x)f_2(n,x)w(x)dx=0
(7)
int_Rf_1(m,x)w(x)dx=0
(8)
int_Rf_2(m,x)w(x)dx=0
(9)

for m,n!=0 over a rangeR, wherec_m andd_m are given constants anddelta_(mn) is theKronecker delta. Now consider an arbitrary functionf(x) and write it as a series

 f(x)=sum_(n=0)^inftya_nf_1(n,x)+sum_(n=0)^inftyb_nf_2(n,x) =f_1(0)a_0+sum_(n=1)^inftya_nf_1(n,x)+f_2(0)b_0+sum_(n=1)^inftyb_nf_2(n,x) =[f_1(0)a_0+f_2(0)b_0]+sum_(n=1)^inftya_nf_1(n,x)+sum_(n=1)^inftyb_nf_2(n,x) =e+sum_(n=1)^inftya_nf_1(n,x)+sum_(n=1)^inftyb_nf_2(n,x)
(10)

and plug this into the orthogonality relationships to obtain

 int_Rf(x)f_1(n,x)w(x)dx=eint_Rf_1(n,x)dx+int_Rsum_(m=1)^inftya_mf_1(m,x)f_1(n,x)w(x)dx+int_Rsum_(m=1)^inftyb_mf_1(m,x)f_2(n,x)w(x)dx =e·0+sum_(m=1)^inftya_mint_Rf_1(m,x)f_1(n,x)w(x)dx+sum_(m=1)^inftyb_mint_Rf_1(m,x)f_2(n,x)w(x)dx =sum_(m=1)^inftya_mc_mdelta_(mn)+sum_(m=1)^inftyb_m·0 =a_nc_n int_Rf(x)f_2(n,x)w(x)dx=eint_Rf_2(n,x)dx+int_Rsum_(m=1)^inftya_mf_1(m,x)f_2(n,x)w(x)dx+int_Rsum_(m=1)^inftyb_mf_2(m,x)f_2(n,x)w(x)dx =e·0+sum_(m=1)^inftya_mint_Rf_1(m,x)f_2(n,x)w(x)dx+sum_(m=1)^inftyb_mint_Rf_2(m,x)f_2(n,x)w(x)dx =sum_(m=1)^inftya_m·0+sum_(m=1)^inftyb_md_mdelta_(mn) =b_nd_n int_Rf(x)w(x)dx=eint_Rdx+int_Rsum_(m=1)^inftya_mf_1(m,x)w(x)dx+int_Rsum_(m=1)^inftyb_mf_2(m,x)w(x)dx =eint_Rdx+sum_(m=1)^inftya_mint_Rf_1(m,x)w(x)dx+sum_(m=1)^inftyb_nint_Rf_2(m,x)w(x)dx =eint_Rdx+sum_(m=1)^inftya_m·0+sum_(m=1)^inftyb_m·0 =eint_Rdx.
(11)

As a result of these relations, if a series for f(x) of the assumed form exists, its coefficients will satisfy

a_n=1/(c_n)int_Rf(x)f_1(n,x)w(x)dx
(12)
b_n=1/(d_n)int_Rf(x)f_2(n,x)w(x)dx
(13)
e=(int_Rf(x)w(x)dx)/(int_Rw(x)dx).
(14)

The usual Fourier series is recovered by taking f_1(n,x)=cos(nx) andf_2(n,x)=sin(nx) which form a complete orthogonal system over[-pi,pi] withweighting functionw(x)=1 and noting that, for this choice of functions,

c_m=int_(-pi)^picos^2(mx)dx=pi
(15)
d_m=int_(-pi)^pisin^2(mx)dx=pi.
(16)

Therefore, the Fourier series of a function f(x) is given by

 f(x)=e+sum_(n=1)^inftya_ncos(nx)+sum_(n=1)^inftyb_nsin(nx),
(17)

where the coefficients are

a_n=1/piint_(-pi)^pif(x)cos(nx)dx
(18)
b_n=1/piint_(-pi)^pif(x)sin(nx)dx
(19)
e=1/(2pi)int_(-pi)^pif(x)dx.
(20)




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值