INFO6090 - Business Intelligence for the Enterprise ASSIGNMENT 2

部署运行你感兴趣的模型镜像

Java Python INFO6090 - Business Intelligence for the Enterprise

ASSIGNMENT 2 - INSTRUCTIONS

Worth:

25% of your course final mark (Report = 20%, Video Presentation = 5%)

Assignment:

This assignment builds upon the concepts and analyses from Assignment 1 and focuses on a broader perspective of the EPA’s regional offices. It requires students to demonstrate their ability to integrate data, perform. predictive analysis, and provide strategic recommendations at an organizational level.

The key outcomes to be delivered are:

Data Modelling and ETL Process: Design a star schema and integrate data from

multiple offices. Document the ETL process and note any quality assurance measures undertaken.

Predictive Analysis and Reporting: Create a predictive model to forecast

compliance trends and evaluate the performance of each office. Provide SQL queries (or Excel screenshots) and evidence for your analysis.

Business Recommendations: Based on the analysis, recommend strategic actions. These should clearly address the client's question and provide evidence-based suggestions.

Dashboard Creation: Create an interactive dashboard using Excel or Power BI that visualizes the performance of the offices.

Presentation: Present your findings and recommendations in a formal presentation to senior management.

Assignment Question:

The current CEO of the NSW Environment Protection Authority (EPA) is Tony Chappel. He has been leading the EPA since August 2022. He has been speaking to his senior executives   about your previous analysis at the Newcastle office. He was impressed with the insights on  performance and compliance monitoring, and particularly your recommendations for improving efficiency through targeted incentives and resource optimization. Given the positive impact of your work, the CEO now wants to expand the scope of the analysis to all regional offices in Australia.

“I’ve been informed about the great work you did at the Newcastle branch to analyse compliance activities and recommend ways to optimize resources. Your report suggested that we could streamline operations by consolidating some activities, which resulted in a more efficient use of the teams time and a noticeable increase in compliance rates. However, with  ongoing budget constraints and pressure from the board to reduce operational costs, we need to take more drastic measures. I would like to understand the performance of our various regional offices in detail. I want to identify which offices are performing well, which ones are underperforming, and where we can optimize our operations.

We are considering restructuring, which might involve consolidating or even closing underperforming offices. This decision will be difficult and sensitive, and we need comprehensive data and analysis to support our choices. I would like you to perform a thorough evaluation of all our regional offices, including analysing their compliance rates, community feedback, and resource utilization. Please also project compliance trends for the upcoming year and analyse how our current incentive program is impacting performance. Additionally, consider the following scenario: What would happen if INFO6090 - Business Intelligence for the Enterprise ASSIGNMENT 2 we introduced a new incentive structure? For example, if we tied incentive payments directly to achieving a certain compliance threshold, how would that affect performance and morale? Could we save costs while maintaining or even improving compliance? Please explore these possibilities in your analysis.

Finally, as this is ahighly sensitive issue, I need a comprehensive report with evidence-based recommendations on which offices we should potentially downsize or close. Please create a ranking of the offices based on your findings and ensure that your recommendations are  supported by a dashboard visualization that we can use to present this information to the board.

Assignment Deliverables:

Using the data file provided in Excel and notes about the data (INFO6090 Assignment 2 - Dataset.xlsx), you are required to complete the following elements as part of the assignment:

•   Data Model/Data Load Process

o Data Model, appropriate data attributes and cleaned data.

o Provide an overview of the data model & ETL process completed to get the data ready for analysis (including identification of any anomalies found, methods of  cleaning them and the overall effect of cleaning on the final business analysis)

o Ensure you record any assumptions you have made as part of this component, and your reasoning behind the assumption.

•   Analysis including any predictive work undertaken and recommendations to Management:

o In your report, provide the SQL and raw output of your base analysis.

o Provide workings of the predictive work you completed.

o Ensure you record any assumptions you have made as part of this component, and your reasoning behind the assumptions. This includes answers to any relevant questions put to management (your lecturer) during workshops.

•   Business Report (not to exceed 1.5 pages)

o Your report should include

Executive Summary. Your Executive report should include a short

Executive brief/summary that presents a clear concise response back to the CEO questions

Business recommendations to management (with justifications) based on   your analysis. This can also include business initiatives that are backed up by benefits and costings.

Business analysis and recommendations derived from your Core Analysis work.

•   A dashboard that allows quick comparisons between the sites to be undertaken as well as containing at least one element of ‘predictive’ analysis.

o You may use either Excel and pivot tables to provide a dynamic view of the dashboard, or you can use Power BI to construct your dashboard.

o You should present your dashboard in your presentation and display its dynamic nature.

•   Record an individual presentation as if it is to be consumed in a formal boardroom meeting.

o Your presentation is worth 5% of the assignment mark. Remember to present to what is relevant to your audience (Senior Management) and not technical specialists. Use graphs where appropriate and only tables for detail.

o Use your dashboard to answer some of the business questions.

o You should time your presentation to be between 3-5 minutes (timing will be assessed so learn to present relevant material only).

Note: As part of your response, you should also specifically include any assumptions/external information you have made/used throughout the process as well as any quality processes/checking you have completed or limitations you discovered. The assumptions will not be included in the marking but may allow us to understand and (perhaps) moderate our interpretation of your results, even if they are not correct.

Submission Instructions

Similarly to Assignment 1 (Part A), you are required to upload all files in a single zip file (including the presentation) to the Assignment 2 Canvas folder and the Word Report to TurnItIn in Week 12 (see more details on Canvas). Work will not be marked if you have not included in a Team Cover Sheet. A detailed marking guide is available on Canvas         

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

采用PyQt5框架与Python编程语言构建图书信息管理平台 本项目基于Python编程环境,结合PyQt5图形界面开发库,设计实现了一套完整的图书信息管理解决方案。该系统主要面向图书馆、书店等机构的日常运营需求,通过模块化设计实现了图书信息的标准化管理流程。 系统架构采用典型的三层设计模式,包含数据存储层、业务逻辑层和用户界面层。数据持久化方案支持SQLite轻量级数据库与MySQL企业级数据库的双重配置选项,通过统一的数据库操作接口实现数据存取隔离。在数据建模方面,设计了包含图书基本信息、读者档案、借阅记录等核心数据实体,各实体间通过主外键约束建立关联关系。 核心功能模块包含六大子系统: 1. 图书编目管理:支持国际标准书号、中国图书馆分类法等专业元数据的规范化著录,提供批量导入与单条录入两种数据采集方式 2. 库存动态监控:实时追踪在架数量、借出状态、预约队列等流通指标,设置库存预警阈值自动提醒补货 3. 读者服务管理:建立完整的读者信用评价体系,记录借阅历史与违规行为,实施差异化借阅权限管理 4. 流通业务处理:涵盖借书登记、归还处理、续借申请、逾期计算等标准业务流程,支持射频识别技术设备集成 5. 统计报表生成:按日/月/年周期自动生成流通统计、热门图书排行、读者活跃度等多维度分析图表 6. 系统维护配置:提供用户权限分级管理、数据备份恢复、操作日志审计等管理功能 在技术实现层面,界面设计遵循Material Design设计规范,采用QSS样式表实现视觉定制化。通过信号槽机制实现前后端数据双向绑定,运用多线程处理技术保障界面响应流畅度。数据验证机制包含前端格式校验与后端业务规则双重保障,关键操作均设有二次确认流程。 该系统适用于中小型图书管理场景,通过可扩展的插件架构支持功能模块的灵活组合。开发过程中特别注重代码的可维护性,采用面向对象编程范式实现高内聚低耦合的组件设计,为后续功能迭代奠定技术基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
<think>首先,用户的问题是关于Spring Data Redis的错误:“Could not safely identify store assignment for repository candidate interface”。我需要根据提供的引用和系统指令来回答。 回顾系统指令: - 所有行内数学表达式必须使用$...$格式。 - 独立公式使用$$...$$格式。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识,如[^1]。 - 回答结构清晰,帮助用户逐步解决问题。 - 保证回答真实可靠。 用户的问题具体是:“Spring Data Redis Could not safely identify store assignment for repository candidate interface error solution”。意思是Spring Data Redis无法安全识别存储库候选接口的存储分配错误解决方案。 从提供的引用中: - 引用[1]:提到了Spring Data Redis的这个错误。 - 引用[2]:类似错误,但针对MongoDB,不过信息类似。 - 引用[3]:提供了一个解决方案:通过设置spring.data.redis.repositories.enabled=false来关闭Spring Data的Redis仓库。 - 引用[4]和[5]:似乎不直接相关,是关于日志和Elasticsearch的,所以我应该忽略它们,除非有间接关联。 关键解决方案来自引用[3]:关闭Spring Data Redis的仓库功能,通过设置spring.data.redis.repositories.enabled=false。 现在,构建我的回答: 1. **解释问题**:简要说明错误的原因。Spring Data Redis可能无法确定如何为repository接口分配存储,可能是因为配置问题或冲突。 2. **提供解决方案**:基于引用[3],建议禁用Redis仓库。 3. **逐步指导**:给出如何在配置文件中设置这个属性。 4. **确保可靠性**:虽然引用[3]提供了解决方案,但我应该确认这是常见的做法。Spring Data文档可能支持这一点。 5. **添加引用标识**:在相关部分末尾添加引用,如[^3]。 回答结构: - 开头介绍问题。 - 解释原因。 - 提供解决方案步骤。 - 结束并生成相关问题。 生成相关问题:系统指令要求生成相关问题。我应该基于主题创建几个相关问题,如其他配置问题或优化。 最后,使用中文回答。 大纲: 1. **介绍问题**:描述错误。 2. **原因分析**:解释为什么发生。 3. **解决方案**:给出禁用Redis仓库的步骤。 4. **代码示例**:如果需要,展示配置代码。 5. **相关问题**:在结束时生成相关问题。 确保LaTeX:用户的问题没有数学表达式,所以可能不需要。但如果提到任何公式,我会用$...$。 现在,写出回答。</think>### Spring Data Redis "Could not safely identify store assignment for repository candidate interface" 错误解决方案 当您在使用 Spring Data Redis 时遇到 "Could not safely identify store assignment for repository candidate interface" 错误时,这通常是由于 Spring Data 无法正确识别或分配存储库接口的存储类型导致的。这可能是由于配置冲突、依赖问题或 Spring Data 的自动仓库检测机制失败引起的。下面我将逐步解释原因并提供可靠的解决方案,帮助您快速修复问题。回答基于常见实践和参考文档,确保真实可靠。 #### 错误原因分析 - **核心问题**:Spring Data Redis 在启动时尝试自动检测和分配存储库接口(repository candidate interface),但由于配置不当或模块冲突,它无法安全识别该接口应绑定到 Redis 存储。常见原因包括: - 项目中同时使用了多个 Spring Data 模块(如 Spring Data JPA、Spring Data MongoDB),导致存储分配冲突。 - 未明确指定 Redis 作为主存储库,或仓库接口定义不兼容。 - Spring Boot 自动配置机制在检测存储类型时失败,可能因为依赖缺失或版本不匹配[^3]。 - **典型表现**:错误日志中会显示类似信息:`INFO o.s.d.r.c.RepositoryConfigurationExtensionSupport[270] - Spring Data Redis - Could not safely identify store assignment for repository candidate interface`[^2]。 #### 解决方案步骤 解决此错误的关键是显式禁用 Spring Data Redis 的仓库功能,以避免自动检测冲突。以下是详细步骤: 1. **禁用 Spring Data Redis 仓库**: - 在您的 `application.properties` 或 `application.yml` 配置文件中,添加以下属性来关闭 Redis 仓库支持。这会强制 Spring Boot 跳过自动仓库分配,从而避免识别错误。 - **示例配置(使用 YAML 格式)**: ```yaml spring: data: redis: repositories: enabled: false # 显式关闭 Redis 仓库功能 ``` 或使用 properties 格式: ```properties spring.data.redis.repositories.enabled=false ``` - **为什么有效**:此设置直接禁用 Spring Data Redis 的仓库自动配置,解决了存储分配冲突问题。引用[^3] 中明确提到此方法作为解决方案:"关闭spring data 的redis仓库即可"。 2. **检查依赖和版本兼容性**: - 确保您的 `pom.xml` 或 `build.gradle` 中只包含必要的 Spring Data Redis 依赖。避免引入冲突模块(如同时使用 Spring Data JPA)。 - 示例 Maven 依赖(确保版本一致): ```xml <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> <version>3.1.0</version> <!-- 使用最新稳定版 --> </dependency> ``` - 验证 Spring Boot 和 Spring Data 版本兼容性。推荐使用 Spring Boot 3.x 与 Spring Data Redis 3.x 组合,以减少冲突。 3. **清理和重启应用**: - 在修改配置后,清理项目构建(如运行 `mvn clean` 或 `gradle clean`)。 - 重启应用服务器。错误日志应消失,应用正常启动。 #### 其他注意事项 - **如果问题持续**:检查仓库接口定义。确保接口未继承自其他 Spring Data 模块(如 JPA 的 `JpaRepository`)。如果需要使用 Redis 仓库,请显式指定 `@RedisHash` 注解。 - **性能影响**:禁用仓库功能不会影响 Redis 的基本操作(如 `RedisTemplate`),但会限制高级仓库特性。如果必须使用仓库,请考虑重构代码以明确存储类型[^1]。 - **参考文档**:Spring Data 官方文档建议在混合存储场景中显式配置仓库分配。详见 [Spring Data Redis Reference](https://docs.spring.io/spring-data/redis/docs/current/reference/html/)。 通过以上步骤,错误应被解决。如果仍有问题,提供更多日志细节以便进一步诊断[^3]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值