An integer interval [a, b]
(for integers a < b
) is a set of all consecutive integers from a
to b
, including a
and b
.
Find the minimum size of a set S such that for every integer interval A in intervals
, the intersection of S with A has size at least 2.
Example 1:
Input: intervals = [[1, 3], [1, 4], [2, 5], [3, 5]] Output: 3 Explanation: Consider the set S = {2, 3, 4}. For each interval, there are at least 2 elements from S in the interval. Also, there isn't a smaller size set that fulfills the above condition. Thus, we output the size of this set, which is 3.
Example 2:
Input: intervals = [[1, 2], [2, 3], [2, 4], [4, 5]] Output: 5 Explanation: An example of a minimum sized set is {1, 2, 3, 4, 5}.
Note:
intervals
will have length in range[1, 3000]
.intervals[i]
will have length2
, representing some integer interval.intervals[i][j]
will be an integer in[0, 10^8]
.
以例子1举例说明,假设求重叠的集合最小长度为size,本题的size为2,注意集合S不是一个区间,是一个集合,比如如果intervals = [1,2], [99,100],那么集合S = {1,2,99,100}:
先排序,如下所示:
[1,3]
[1,4]
[2,5]
[3,5]
首先定义一个counts[i] = size,即所有原始的每个区间要取得数字数量为size个,本地就是要去除每个区间要取的数的重复值。
最末尾的一组数据,第一组[3,5],最多取出size个数,因为取多了最后的size肯定就不是最小的了;从起始位置开始去,如本组取出数字3和4,同时要将剩余的其他组数据中,与3,4重叠的去除,比如[1,3]中有重叠3,即去除一个数字,counts[0] =2- 1 = 1,后面[1,3]区间取一个最小的就可以满足重叠区域为size个数了;[1,4]有重叠3,4,即去除两个数字,counts[1] = 2-2=0;[2,5]有重叠[3,4],即去除2个数字,counts[2]=2-2=0
接下来第二组[2,5],因为该组对应counts[2]=0,因此改组可以不用care,因为[3,5]区间取得两个数,与该组完美重叠size个数;
接下来第三组[1,4],因为该组对应counts[1]=0,因此改组可以不用care,因为[3,5]区间取得两个数,与该组完美重叠size个数;
接下来第四组[1,3],因为改组对应counts[0]=1,因此只需要取最小的一个数n,即可满足于[1,3]区间与[3,5区间区间取出的两个数3,4与n构成的集合S重叠size个数的需求
因此总共加起来共有3个数字的重叠区。
程序如下所示:
class Solution {
public int intersectionSizeTwo(int[][] intervals) {
Arrays.sort(intervals, new Comparator<int[]>(){
@Override
public int compare(int[] v0, int[] v1){
if (v0[0] != v1[0]){
return v0[0] - v1[0];
}
return v1[1] - v0[1];
}
});
int[] counts = new int[intervals.length];
Arrays.fill(counts, 2);
int t = intervals.length;
int res = 0;
while (-- t >= 0){
int s = intervals[t][0];
int e = intervals[t][1];
for (int m = s; m < s + counts[t]; ++ m){
for (int i = 0; i < t; ++ i){
if (m <= intervals[i][1]){
counts[i] --;
}
}
res ++;
}
}
return res;
}
}