757. Set Intersection Size At Least Two

An integer interval [a, b] (for integers a < b) is a set of all consecutive integers from a to b, including aand b.

Find the minimum size of a set S such that for every integer interval A in intervals, the intersection of S with A has size at least 2.

Example 1:

Input: intervals = [[1, 3], [1, 4], [2, 5], [3, 5]]
Output: 3
Explanation:
Consider the set S = {2, 3, 4}.  For each interval, there are at least 2 elements from S in the interval.
Also, there isn't a smaller size set that fulfills the above condition.
Thus, we output the size of this set, which is 3.

Example 2:

Input: intervals = [[1, 2], [2, 3], [2, 4], [4, 5]]
Output: 5
Explanation:
An example of a minimum sized set is {1, 2, 3, 4, 5}.

Note:

  1. intervals will have length in range [1, 3000].
  2. intervals[i] will have length 2, representing some integer interval.
  3. intervals[i][j] will be an integer in [0, 10^8].

以例子1举例说明,假设求重叠的集合最小长度为size,本题的size为2,注意集合S不是一个区间,是一个集合,比如如果intervals = [1,2], [99,100],那么集合S = {1,2,99,100}:

先排序,如下所示:

[1,3]

[1,4]

[2,5]

[3,5]

首先定义一个counts[i] = size,即所有原始的每个区间要取得数字数量为size个,本地就是要去除每个区间要取的数的重复值。

最末尾的一组数据,第一组[3,5],最多取出size个数,因为取多了最后的size肯定就不是最小的了;从起始位置开始去,如本组取出数字3和4,同时要将剩余的其他组数据中,与3,4重叠的去除,比如[1,3]中有重叠3,即去除一个数字,counts[0] =2- 1 = 1,后面[1,3]区间取一个最小的就可以满足重叠区域为size个数了;[1,4]有重叠3,4,即去除两个数字,counts[1] = 2-2=0;[2,5]有重叠[3,4],即去除2个数字,counts[2]=2-2=0

接下来第二组[2,5],因为该组对应counts[2]=0,因此改组可以不用care,因为[3,5]区间取得两个数,与该组完美重叠size个数;

接下来第三组[1,4],因为该组对应counts[1]=0,因此改组可以不用care,因为[3,5]区间取得两个数,与该组完美重叠size个数;

接下来第四组[1,3],因为改组对应counts[0]=1,因此只需要取最小的一个数n,即可满足于[1,3]区间与[3,5区间区间取出的两个数3,4与n构成的集合S重叠size个数的需求

因此总共加起来共有3个数字的重叠区。

程序如下所示:

class Solution {
    public int intersectionSizeTwo(int[][] intervals) {
        Arrays.sort(intervals, new Comparator<int[]>(){
            @Override
            public int compare(int[] v0, int[] v1){
                if (v0[0] != v1[0]){
                    return v0[0] - v1[0];
                }
                return v1[1] - v0[1];
            }
        });
        int[] counts = new int[intervals.length];
        Arrays.fill(counts, 2);
        int t = intervals.length;
        int res = 0;
        while (-- t >= 0){
            int s = intervals[t][0];
            int e = intervals[t][1];
            for (int m = s; m < s + counts[t]; ++ m){
                for (int i = 0; i < t; ++ i){
                    if (m <= intervals[i][1]){
                        counts[i] --;
                    }
                }
                res ++;
            }
        }
        return res;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值