392. Is Subsequence

本文介绍了一种检查字符串s是否为另一字符串t的子序列的高效算法,该算法的时间复杂度为O(m)+O(n),其中m和n分别是字符串s和t的长度。文章通过示例展示了如何实现这一算法,并探讨了当面对大量输入字符串时,如何优化代码。

Given a string s and a string t, check if s is subsequence of t.

You may assume that there is only lower case English letters in both s and tt is potentially a very long (length ~= 500,000) string, and s is a short string (<=100).

A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ace" is a subsequence of "abcde" while "aec" is not).

Example 1:
s = "abc"t = "ahbgdc"

Return true.

Example 2:
s = "axc"t = "ahbgdc"

Return false.

Follow up:
If there are lots of incoming S, say S1, S2, ... , Sk where k >= 1B, and you want to check one by one to see if T has its subsequence. In this scenario, how would you change your code?

时间复杂度O(m) + O(n),程序如下所示:

class Solution {
    public boolean isSubsequence(String s, String t) {
        int lenS = s.length(), lenT = t.length();
        int index = 0, cnt = 0;
        for (int i = 0; i < lenS; ++ i){
            for (int j = index; j < lenT; ++ j){
                index ++;
                if (t.charAt(j) == s.charAt(i)){
                    cnt ++;
                    break;
                }
            }
        }
        return lenS == cnt;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值