CF575 DIV3 B

You are given an array a consisting of n integers a1,a2,…,an. You want to split it into exactly k non-empty non-intersecting subsegments such that each subsegment has odd sum (i. e. for each subsegment, the sum of all elements that belong to this subsegment is odd). It is impossible to rearrange (shuffle) the elements of a given array. Each of the n elements of the array a must belong to exactly one of the k subsegments.

Let’s see some examples of dividing the array of length 5 into 3 subsegments (not necessarily with odd sums): [1,2,3,4,5] is the initial array, then all possible ways to divide it into 3 non-empty non-intersecting subsegments are described below:

[1],[2],[3,4,5];
[1],[2,3],[4,5];
[1],[2,3,4],[5];
[1,2],[3],[4,5];
[1,2],[3,4],[5];
[1,2,3],[4],[5].
Of course, it can be impossible to divide the initial array into exactly k subsegments in such a way that each of them will have odd sum of elements. In this case print “NO”. Otherwise, print “YES” and any possible division of the array. See the output format for the detailed explanation.

You have to answer q independent queries.

Input
The first line contains one integer q (1≤q≤2⋅105) — the number of queries. Then q queries follow.

The first line of the query contains two integers n and k (1≤k≤n≤2⋅105) — the number of elements in the array and the number of subsegments, respectively.

The second line of the query contains n integers a1,a2,…,an (1≤ai≤109), where ai is the i-th element of a.

It is guaranteed that the sum of n over all queries does not exceed 2⋅105 (∑n≤2⋅105).

Output
For each query, print the answer to it. If it is impossible to divide the initial array into exactly k subsegments in such a way that each of them will have odd sum of elements, print “NO” in the first line. Otherwise, print “YES” in the first line and any possible division of the array in the second line. The division can be represented as k integers r1, r2, …, rk such that 1≤r1<r2<⋯<rk=n, where rj is the right border of the j-th segment (the index of the last element that belongs to the j-th segment), so the array is divided into subsegments [1;r1],[r1+1;r2],[r2+1,r3],…,[rk−1+1,n]. Note that rk is always n but you should print it anyway.

Example
Input
3
5 3
7 18 3 14 1
5 4
1 2 3 4 5
6 2
1 2 8 4 10 2
Output
YES
1 3 5
NO
NO
把一个数组分为k个子数组,每个子数组和为奇数,输入的时候记录奇数个数,如果奇数个数-k大于等于0并且除2余0即可,然后再遍历一次就好了

#include<stdio.h>
#include<algorithm>
using namespace std;
int q,n,k,a[200005];
int main()
{
	scanf("%d",&q);
	while(q--)
	{
		scanf("%d%d",&n,&k);
		int cnt=0;
		for(int i=1;i<=n;i++)
		{
			scanf("%d",a+i);
			if(a[i]%2)
			cnt++;
		}
		if(cnt<k||(cnt-k)%2)
		printf("NO\n");
		else
		{
			printf("YES\n");
			int num=0;
			for(int i=1;i<=n;i++)
			{
				if(num==k-1)
				break;
				if(a[i]%2)
				{
					printf("%d ",i);
					num++;
				}				
			}
			printf("%d\n",n);
		}
	}
}
### 关于 Codeforces CF994 Div. 2 的题目与解答 #### 题目概述 Codeforces Round #412 (Div. 2),即 CF994,采用动态评分机制。这种机制意味着一个问题的最大分值取决于解决问题的人数与总参赛人数的比例[^1]。 #### 动态评分机制解释 对于该轮比赛而言,如果某道题目的解决者数量占总参与者的比例较低,则这道题目的分数会相对较高;反之则低。所有至少提交了一次代码的人都被视为参加了这场比赛。 #### 示例解法展示 考虑到不同的算法挑战,在这里提供一道关于字符串处理的问题及其解决方案作为例子: ##### 不同字符计数问题 给定一个长度不超过 \(10^5\) 的字符串,目标是计算其中不同字符的数量并输出重复字符的次数。以下是实现这一功能的一个 C++ 程序片段: ```cpp #include<bits/stdc++.h> using namespace std; const int N=100000+10; char a[N]; int main(){ int n; while(~scanf("%d",&n)){ scanf("%s",a); sort(a,a+n); int x=unique(a,a+n)-a; // 计算不重复字符数目 if(n>26) printf("-1\n"); else printf("%d\n",n-x); // 输出重复字符个数 } return 0; } ``` 此程序通过 `sort` 函数对输入字符串进行了排序,并利用 STL 中的 `unique()` 来去除相邻相同的元素,从而统计出独一无二的字符数量[^2]。 #### 构建三维结构体模型 另一个有趣的案例涉及构建由立方体组成的二维网格表示的物体。每个位置上的整数值代表堆叠在此处的小方块的高度。为了重建这个对象的外观视角下的形态,可以按照如下方法操作: ```cpp #include<bits/stdc++.h> using namespace std; const int N=107; int n,m,h,mp[N][N],a[N],b[N],i,j,k; int main(){ for(scanf("%d%d%d",&n,&m,&h),i=1;i<=m;++i){ scanf("%d",a+i); } for(i=1;i<=n;++i){ scanf("%d",b+i); } for(i=1;i<=n;++i){ for(j=1;j<=m;++j){ scanf("%d",&mp[i][j]); if(mp[i][j]){ mp[i][j]=min(a[j],b[i]); // 取主视图和侧视图高度较小者 } } } for(i=1;i<=n;++i,puts("")){ for(j=1;j<=m;++j){ printf("%d ",mp[i][j]); } } } ``` 这段代码接收了两组数据——分别对应每一列以及每一行的最大可能高度限制,并据此调整实际放置的立方体高度以满足视觉效果的要求[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值