Diffusion-Convolutional Neural Networks论文笔记

本文详细解读了Diffusion-Convolutional Neural Networks论文,重点介绍了hop概念,它扩展了节点的关注范围,不再局限于直接邻居。论文探讨了节点分类、图分类和边分类三种任务,并详细阐述了网络结构、输入输出以及参数设置。在节点分类中,-hop矩阵P*是关键,通过与特征矩阵X相乘得到中间表示。图分类则通过对所有节点的平均得到Z。边分类引入了连接矩阵Bt,用于处理边的特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文链接

总结

这篇文章提出了hop的概念,使一个节点能够关注到与它距离更远的节点,而不仅限于一阶邻居。

网络介绍

在这里插入图片描述
这篇论文主要针对三种分类任务。

1. 节点分类

1.1 输入

输入为两个矩阵,分别为矩阵P和矩阵X。X为图的特征矩阵(N*F),P则是多个类似于邻接矩阵的矩阵叠加而成,也是本篇论文的核心‘hop’。
对于网络而言,hop是一个超参,当hop=1时,则P就代表着邻接矩阵;当hop=2时,P代表着邻接矩阵加上与该节点距离为2的节点的邻接矩阵(即设该节点为i,要到达节点j,最短路径为i->k->j)。hop更高时以此类推。
而图中P,实际上在论文中用P*来表示,是是将所有的邻接矩阵堆叠到一起的产物(即hop=2即将1阶邻居的邻接矩阵和2阶邻居的邻接矩阵concat到一起)。如此的话,P*就是一个N*H*N的矩阵。
所以,输入的P*和X相乘后,就得到了N*H*F的矩阵。

1.2 参数

这里的参数有 W c 和 W d W^c和W^d WcWd两个,是H*F的矩阵,与输入进行点乘(element-wise)。

1.3 输出

在这里插入图片描述

1.3.1 问题

论文中提到由Z到Y的部分应该是一个全连接,而

### Stable Video Diffusion Implementation and Techniques In the context of video processing within computer vision, stable video diffusion refers to methods that ensure consistency across frames while performing tasks such as denoising or pose estimation. For instance, VIBE (Video Inference for Human Body Pose and Shape Estimation) employs a robust approach combining temporal smoothing with spatial refinement to achieve stability over time[^1]. #### Temporal Smoothing Temporal smoothing is crucial for maintaining consistent estimations throughout consecutive frames. This technique leverages information from neighboring frames to refine current frame predictions. Specifically, algorithms like Kalman filters can be utilized where prediction updates are made based on previous states. ```python import numpy as np def kalman_filter(x, P, measurement): """ Simple example of applying Kalman filter. :param x: State estimate vector :param P: Estimate covariance matrix :param measurement: Current measurement value """ H = np.eye(len(x)) # Measurement function R = np.eye(len(measurement)) * 0.1 # Measurement noise y = measurement - np.dot(H, x) S = np.dot(np.dot(H, P), H.T) + R K = np.dot(np.dot(P, H.T), np.linalg.inv(S)) x = x + np.dot(K, y) I = np.eye(len(x)) P = np.dot((I - np.dot(K, H)), P) return x, P ``` #### Spatial Refinement Spatial refinement focuses on enhancing local details by considering pixel-level relationships within individual frames. Convolutional neural networks (CNNs) play an essential role here due to their ability to capture hierarchical patterns effectively. By integrating CNN-based models into pipelines, more accurate feature extraction becomes possible leading to improved overall performance. For both aspects mentioned above, it's important to note how they contribute towards achieving stable results when dealing with dynamic scenes involving human body movements captured through videos.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值