Diffusion-Convolutional Neural Networks (传播-卷积神经网络)
2018-04-09 21:59:02
1. Abstract:
我们提出传播-卷积神经网络(DCNNs),一种处理 graph-structured data 的新模型。随着 DCNNs 的介绍,我们展示如何从 graph structured data 中学习基于传播的表示(diffusion-based representations),然后作为节点分类的有效基础。DCNNs 拥有多个有趣的性质,包括:
1). a latent representation for graphical data that is invariant under isomorphism;
2). polynomial-time prediction;
3). learning that can be represented as tensor operations;
4). efficiently implemented on a GPU.
2. Introduction:
处理结构化的数据是非常有挑战的。一方面,找到合适的方法来展示和探索数据的结构可以获得预测精度的提升;另一方面,找到这样的结构可能很困难,在模型中添加结构会使得预测复杂度显著的提升。