description
analysis
-
区间DPDPDP,首先按照键值排个序,这样保证树的中序遍历就为原序列
-
设f[0][i][j]f[0][i][j]f[0][i][j]表示[i..j][i..j][i..j]区间作为[unknown..i−1][unknown..i-1][unknown..i−1]的右儿子的最大和,f[1][i][j]f[1][i][j]f[1][i][j]就是[i..j][i..j][i..j]区间作为[j+1..unknown][j+1..unknown][j+1..unknown]的左儿子
-
预处理fff的初值是很明显的,然后O(n2log)O(n^2log)O(n2log)预处理出两两数之间的gcd\gcdgcd
-
对于一段区间[i..j][i..j][i..j],枚举中转点kkk,表示[i..k−1],[k+1,j][i..k-1],[k+1,j][i..k−1],[k+1,j]分别作为kkk的左右儿子
-
k=ik=ik=i或k=jk=jk=j特殊转移,i<k<ji<k<ji<k<j可知[i..j][i..j][i..j]可由f[1][i][k−1],f[0][k+1][j]f[1][i][k-1],f[0][k+1][j]f[1][i][k−1],f[0][k+1][j]转移得到
-
具体转移到000或111取决于a[k]a[k]a[k]与a[i−1],a[j+1]a[i-1],a[j+1]a[i−1],a[j+1]是否符合条件(gcd>1\gcd>1gcd>1)
code
#pragma GCC optimize("O3")
#pragma G++ optimize("O3")
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>
#define MAXN 305
#define INF 1000000007
#define ll long long
#define reg register ll
#define fo(i,a,b) for (reg i=a;i<=b;++i)
#define fd(i,a,b) for (reg i=a;i>=b;--i)
using namespace std;
ll f[2][MAXN][MAXN];
ll g[MAXN][MAXN];
ll sum[MAXN];
ll n,ans=-INF;
struct node
{
ll x,y;
}a[MAXN];
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while (ch<'0' || '9'<ch){if (ch=='-')f=-1;ch=getchar();}
while ('0'<=ch && ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
inline ll max(ll x,ll y){return x>y?x:y;}
inline bool cmp(node a,node b){return a.x<b.x;}
inline ll get(ll x,ll y){return sum[y]-sum[x-1];}
inline ll gcd(ll x,ll y){return x%y==0?y:gcd(y,x%y);}
int main()
{
freopen("T2.in","r",stdin);
//freopen("tree.in","r",stdin);
//freopen("tree.out","w",stdout);
n=read();
fo(i,0,n)fo(j,0,n)f[0][i][j]=f[1][i][j]=-INF;
fo(i,1,n)a[i].x=read(),a[i].y=read();
sort(a+1,a+n+1,cmp);
fo(i,1,n)fo(j,1,n)g[i][j]=gcd(a[i].x,a[j].x);
fo(i,1,n)
{
sum[i]=sum[i-1]+a[i].y;
if (i!=1 && g[i][i-1]>1)f[0][i][i]=a[i].y;
if (i!=n && g[i][i+1]>1)f[1][i][i]=a[i].y;
}
fo(len,2,n)
{
fo(i,1,n-len+1)
{
ll j=i+len-1,tmp;
fo(k,i,j)
{
if (k==i)tmp=f[0][i+1][j]+get(i,j);
else if (k==j)tmp=f[1][i][j-1]+get(i,j);
else tmp=f[1][i][k-1]+f[0][k+1][j]+get(i,j);
if (i!=1 && g[k][i-1]>1)f[0][i][j]=max(f[0][i][j],tmp);
if (j!=n && g[k][j+1]>1)f[1][i][j]=max(f[1][i][j],tmp);
if (n==len)ans=max(ans,tmp);
}
}
}
printf("%lld\n",ans<0?-1ll:ans);
return 0;
}