【JZOJ3918】蛋糕

Bessie在生日时面临一个蛋糕切割问题,需要将蛋糕切9刀,分成16份,让朋友们先挑含有最多巧克力的部分。为确保Bessie得到的巧克力总量尽可能多,如何最优化切割策略?分析采用二分搜索配合O(n^3)的矩形枚举算法,寻找最佳切割方案,以达到最大最小值的目标。

description

今天是Bessie的生日,他买了一个蛋糕和朋友们一起分享,蛋糕可以看成是一个R行C列的表格,共有R*C个格子,每个格子都有一个0至9的数字,表示该格子蛋糕拥有的巧克力。现在Bessie要把蛋糕横的切3刀再竖的切3刀,由于Bessie刀法厉害,所以每个格子蛋糕都是完整的,显然蛋糕会被切成16份,然后Bessie和他的15个朋友们每人拿一份,Bessie比较客气,总是等其他朋友拿完了,Bessie拿最后剩下的那一份。Bessie的朋友们都很不客气,都是挑最多巧克力的那份去拿,于是Bessie最后拿到手的那份蛋糕总是巧克力总和最少的。Bessie心想:既然自己总是最后拿蛋糕,那应该怎么切蛋糕,才能使得自己拿的那部分蛋糕的有尽量多的巧克力呢?这个问题自然是你的任务了。


analysis

  • 要求最大值最小,先二分一个答案

  • 对于竖行,O(n3)O(n^3)O(n3)枚举切哪三列,然后剩下用三个二分找出可以满足条件的最小矩形

  • 如果十六个矩形的和的最小值都大于二分的答案则可以把答案取大,否则取小

  • 时间复杂度O(n3log2n)O(n^3log^2n)O(n3log2n)


code

#pragma GCC optimize("O3")
#pragma G++ optimize("O3")
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define MAXN 105
#define ll long long
#define reg register ll
#define fo(i,a,b) for (reg i=a;i<=b;++i)
#define fd(i,a,b) for (reg i=a;i>=b;--i)

using namespace std;

ll a[MAXN][MAXN],sum[MAXN][MAXN];
ll n,m,num;

inline ll get(ll x,ll y,ll xx,ll yy){return sum[xx][yy]-sum[x-1][yy]-sum[xx][y-1]+sum[x-1][y-1];}
inline bool judge(ll x)
{
	fo(i,1,m-1)fo(j,i+1,m-1)fo(k,j+1,m-1)
	{
		ll l=1,r=n,mid,las;
		while (l<r)mid=(l+r)>>1,min(min(get(1,1,mid,i),get(1,i+1,mid,j)),min(get(1,j+1,mid,k),get(1,k+1,mid,m)))>=x?r=mid:l=mid+1;
		if (!r)continue;

		las=l=r+1,r=n;
		while (l<r)mid=(l+r)>>1,min(min(get(las,1,mid,i),get(las,i+1,mid,j)),min(get(las,j+1,mid,k),get(las,k+1,mid,m)))>=x?r=mid:l=mid+1;
		if (r<las)continue;

		las=l=r+1,r=n;
		while (l<r)mid=(l+r)>>1,min(min(get(las,1,mid,i),get(las,i+1,mid,j)),min(get(las,j+1,mid,k),get(las,k+1,mid,m)))>=x?r=mid:l=mid+1;
		if (r<las)continue;

		if (min(min(get(r+1,1,n,i),get(r+1,i+1,n,j)),min(get(r+1,j+1,n,k),get(r+1,k+1,n,m)))>=x)return 1;
	}
	return 0;
}
int main()
{
	//freopen("T1.in","r",stdin);
	scanf("%lld%lld\n",&n,&m);
	fo(i,1,n){fo(j,1,m)num+=(a[i][j]=getchar()-'0');scanf("\n");}
	fo(i,1,n)fo(j,1,m)sum[i][j]=a[i][j]+sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1];
	ll l=0,r=num/16,mid;
	while (l<=r)mid=(l+r)>>1,judge(mid)?l=mid+1:r=mid-1;
	printf("%lld\n",r);
	return 0;
}
### 解题思路 题目要求解决的是一个与图相关的最小覆盖问题,通常在特定条件下可以通过状态压缩动态规划(State Compression Dynamic Programming, SCDP)来高效求解。由于状态压缩的适用条件是状态维度较小(例如K≤10),因此可以利用二进制表示状态集合,从而优化计算过程。 #### 1. 状态表示 - 使用一个整数 `mask` 表示当前选择的点集,其中第 `i` 位为 `1` 表示第 `i` 个节点被选中。 - 定义 `dp[mask]` 表示在选中 `mask` 所代表的点集后,能够覆盖的节点集合。 - 可以通过预处理每个点的邻域信息(包括自身和所有直接连接的点),快速更新状态。 #### 2. 预处理邻域 对于每个节点 `u`,预先计算其邻域范围 `neighbor[u]`,即从该节点出发一步能到达的所有节点集合。这样,在后续的状态转移过程中,可以直接使用这些信息进行合并操作。 #### 3. 状态转移 - 初始化:对每个单独节点 `u`,设置初始状态 `dp[1 << u] = neighbor[u]`。 - 转移规则:对于任意两个状态 `mask1` 和 `mask2`,如果它们没有交集,则可以通过合并这两个状态得到新的状态 `mask = mask1 | mask2`,并更新对应的覆盖范围为 `dp[mask1] ∪ dp[mask2]`。 - 在所有状态生成之后,检查是否某个状态的覆盖范围等于全集(即覆盖了所有节点)。如果是,则记录此时使用的最少节点数量。 #### 4. 最优解提取 遍历所有可能的状态,找出能够覆盖整个图的最小节点数目。 --- ### 时间复杂度分析 - 状态总数为 $ O(2^K) $,其中 `K` 是关键点的数量。 - 每次状态转移需要枚举所有可能的子集组合,复杂度为 $ O(2^K \cdot K^2) $。 - 整体时间复杂度控制在可接受范围内,适用于 `K ≤ 10~20` 的情况。 --- ### 代码实现(状态压缩 DP) ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 25; int neighbor[MAXN]; // 每个节点的邻域 int dp[1 << 20]; // dp[mask] 表示选中的点集合为 mask 时所能覆盖的点集合 int min_nodes; // 最小覆盖点数 void solve(int n, vector<vector<int>>& graph) { // 预处理每个节点的邻域 for (int i = 0; i < n; ++i) { neighbor[i] = (1 << i); // 包括自己 for (int j : graph[i]) { neighbor[i] |= (1 << j); } } // 初始化 dp 数组 memset(dp, 0x3f, sizeof(dp)); for (int i = 0; i < n; ++i) { dp[1 << i] = neighbor[i]; } // 状态转移 for (int mask = 1; mask < (1 << n); ++mask) { if (__builtin_popcount(mask) >= min_nodes) continue; // 剪枝 for (int sub = mask & (mask - 1); sub; sub = (sub - 1) & mask) { int comp = mask ^ sub; if (comp == 0) continue; int new_mask = mask; int covered = dp[sub] | dp[comp]; if (covered == (1 << n) - 1) { min_nodes = min(min_nodes, __builtin_popcount(new_mask)); } dp[new_mask] = min(dp[new_mask], covered); } } } int main() { int n, m; cin >> n >> m; vector<vector<int>> graph(n); for (int i = 0; i < m; ++i) { int u, v; cin >> u >> v; graph[u].push_back(v); graph[v].push_back(u); // 无向图 } min_nodes = n; solve(n, graph); cout << "Minimum nodes required: " << min_nodes << endl; return 0; } ``` --- ### 优化策略 - **剪枝**:当当前状态所用节点数已经超过已知最优解时,跳过后续计算。 - **提前终止**:一旦发现某个状态覆盖了全部节点,并且节点数达到理论下限,即可提前结束程序。 - **空间优化**:可以仅保存当前轮次的状态,减少内存占用。 --- ### 总结 本题通过状态压缩动态规划的方法,将原本指数级复杂度的问题压缩到可接受范围内。结合位运算技巧和预处理机制,能够高效地完成状态转移和覆盖判断操作。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值