三维防空拦截制导弹道仿真python

导弹动力学模型:

import numpy as np
from math import *

class Missile:
    # def __init__(self,v,theta,phi_v,x,y,z):
    #     self.v = v
    #     self.theta = theta
    #     self.phi_v = phi_v
    #     self.x = x
    #     self.y = y
    #     self.z = z

    def dery(self,Y,t,Var,U):
        ax = U[0]
        ay = U[1]
        az = U[2]
        v     = Y[0]
        theta = Y[1]
        psi_v = Y[2]
        
        dv     = ax
        dtheta = ay/v
        dpsi_v = -az/(v*cos(theta))
        dx = v*cos(theta)*cos(psi_v)
        dy = v*sin(theta)
        dz = -v*cos(theta)*sin(psi_v)

        self.vx = dx
        self.vy = dy
        self.vz = dz
        return np.array([dv,dtheta,dpsi_v,dx,dy,dz],dtype=float)

    def RungeKutta4(self,Y,h,tn,Var,U):
        k1 = self.dery(Y,  tn,Var,U)
        k2 = self.dery(Y + h*0.5*k1,tn + 0.5 * h,Var,U)
        k3 = self.dery(Y + h*0.5*k2,tn + 0.5 * h,Var,U)
        k4 = self.dery(Y + h*k3,    tn + h,      Var,U)
        # 返回一次迭代后的y值
        Y = Y +  h/ 6.0 *(k1 + 2 * k2 + 2 * k3 + k4)
        return Y

 目标动力学模型:

import numpy as np
from math import *

class Target:
    # def __init__(self,v,theta,phi_v,x,y,z):
    #     self.v = v
    #     self.theta = theta
    #     self.phi_v = phi_v
    #     self.x = x
    #     self.y = y
    #     self.z = z

    def dery(self,Y,t,Var,U):
        ax = U[0]
        ay = U[1]
        az = U[2]
        v     = Y[0]
        theta = Y[1]
        psi_v = Y[2]
        
        dv     = ax
        dtheta = ay/v
        dpsi_v = -az/(v*cos(theta))
        dx = v*cos(theta)*cos(psi_v)
        dy = v*sin(theta)
        dz = -v*cos(theta)*sin(psi_v)
        
        self.vx = dx
        self.vy = dy
        self.vz = dz
        return np.array([dv,dtheta,dpsi_v,dx,dy,dz],dtype=float)

    def RungeKutta4(self,Y,h,tn,Var,U):
        k1 = self.dery(Y,  tn,Var,U)
        k2 = self.dery(Y + h*0.5*k1,tn + 0.5 * h,Var,U)
        k3 = self.dery(Y + h*0.5*k2,tn + 0.5 * h,Var,U)
        k4 = self.dery(Y + h*k3,    tn + h,      Var,U)
        # 返回一次迭代后的y值
        Y = Y +  h/ 6.0 *(k1 + 2 * k2 + 2 * k3 + k4)
        return Y

仿真结果:导弹准确拦截空中目标

 

专业制导控制仿真+qq1763053463

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

相对维度

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值