http://www.elijahqi.win/archives/582
C. Leha and Function
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
Leha like all kinds of strange things. Recently he liked the function F(n, k). Consider all possible k-element subsets of the set [1, 2, …, n]. For subset find minimal element in it. F(n, k) — mathematical expectation of the minimal element among all k-element subsets.
But only function does not interest him. He wants to do interesting things with it. Mom brought him two arrays A and B, each consists of m integers. For all i, j such that 1 ≤ i, j ≤ m the condition Ai ≥ Bj holds. Help Leha rearrange the numbers in the array A so that the sum is maximally possible, where A’ is already rearranged array.
Input
First line of input data contains single integer m (1 ≤ m ≤ 2·105) — length of arrays A and B.
Next line contains m integers a1, a2, …, am (1 ≤ ai ≤ 109) — array A.
Next line contains m integers b1, b2, …, bm (1 ≤ bi ≤ 109) — array B.
Output
Output m integers a’1, a’2, …, a’m — array A’ which is permutation of the array A.
Examples
Input
5
7 3 5 3 4
2 1 3 2 3
Output
4 7 3 5 3
Input
7
4 6 5 8 8 2 6
2 1 2 2 1 1 2
Output
2 6 4 5 8 8 6
n一定时,k越小函数值越大
#include <cstdio>
#include<algorithm>
#define N 220000
inline int read(){
int x=0;char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while(ch<='9'&&ch>='0'){x=x*10+ch-'0';ch=getchar();}
return x;
}
struct node
{
int pos,key,change;
}a[N],b[N];
inline bool cmp1(node a,node b){
return a.key<b.key;
}
inline bool cmp2(node a,node b){
return a.key>b.key;
}
inline bool cmp3(node a,node b){
return a.pos<b.pos;
}
int m;
int main(){
freopen("cf.in","r",stdin);
m=read();
for (int i=1;i<=m;++i) a[i].key=read(),a[i].pos=i;
for (int i=1;i<=m;++i) b[i].key=read(),b[i].pos=i;
std::sort(a+1,a+m+1,cmp1);
std::sort(b+1,b+m+1,cmp2);
for (int i=1;i<=m;++i) b[i].change=a[i].key;
std::sort(b+1,b+m+1,cmp3);
for (int i=1;i<=m;++i) printf("%d ",b[i].change);
return 0;
}