计算机视觉方向简介 | 图像拼接

图像拼接是通过检测特征点、配准、计算单应矩阵和融合来实现的。常用的特征点检测算法包括Harris、SIFT、FAST和SURF,它们对图像旋转和尺度变化具有一定的不变性。图像配准中,NCC和MI是常见的方法。RANSAC算法用于去除异常值,估计单应矩阵。最后,通过图像变形和融合技术完成拼接。

作者戴金艳,公众号:计算机视觉life, 编辑部成员.首发原文链接计算机视觉方向简介 | 图像拼接

简介

图像拼接是将同一场景的多个重叠图像拼接成较大的图像的一种方法,在医学成像、计算机视觉、卫星数据、军事目标自动识别等领域具有重要意义。图像拼接的输出是两个输入图像的并集。通常用到五个步骤:

265.png

特征提取 Feature Extraction:在所有输入图像中检测特征点图像配准 Image Registration:建立了图像之间的几何对应关系,使它们可以在一个共同的参照系中进行变换、比较和分析。大致可以分为以下几个类

  1. 直接使用图像的像素值的算法,例如,correlation methods
  2. 在频域处理的算法,例如,基于快速傅里叶变换(FFT-based)方法;
  3. 低水平特征的算法low level features,通常用到边缘和角点,例如,基于特征的方法,
  4. 高水平特征的算法high-level features,通常用到图像物体重叠部分,特征关系,例如,图论方法(Graph-theoretic methods)

图像变形 Warping:图像变形是指将其中一幅图像的图像重投影,并将图像放置在更大的画布上。图像融合 Blending图像融合是通过改变边界附近的图像灰度级,去除这些缝隙,创建混合图像,从而在图像之间实现平滑过渡。混合模式(Blend modes)用于将两层融合到一起。

特征点提取

特征是要匹配的两个输入图像中的元素,它们是在图像块的内部。这些图像块是图像中的像素组。对输入图像进行Patch匹配。具体解释如下: 如下图所示,fig1和fig2给出了一个很好的patch匹配,因为fig2中有一个patch看起来和fig1中的patch非常相似。当我们考虑到fig3和fig4时,这里的patch并不匹配,因为fig4中有很多类似的patch,它们看起来与fig3中的patch很相似。由于像素强度很相近,所以无法进行精确的特征匹配,为了给图像对提供更好的特征匹配,采用角点匹配,进行定量测量。角点是很好的匹配特性。在视点变化时,角点特征是稳定的。此外,角点的邻域具有强度突变。利用角点检测算法对图像进行角点检测。角点检测算法有Harris角点检测算法、SIFT特征点检测算法((Scale Invariant Feature Transform),FAST算法角点检测算法,SURF特征点检测算法(Speeded-up robust feature)

Harris角点检测算法

Harris算法是一种基于Moravec算法的点特征提取算法。1988年C. Harris 和 M.J Stephens设计了一种图像局部检测窗口。通过在不同的方向上移动少量窗口,可以确

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值