拓扑排序是针对有向无环图。
拓扑排序算法主要是循环执行以下两步,直到不存在入度为0的顶点为止。
拓扑排序算法主要是循环执行以下两步,直到不存在入度为0的顶点为止。
(1) 选择一个入度为0的顶点并输出之;
(2) 从网中删除此顶点及所有出边。
循环结束后,若输出的顶点数小于网中的顶点数,则输出“有回路”信息,否则输出的顶点序列就是一种拓扑序列。
简单实现:
#include<iostream>
#define MVNum 100//表示最大顶点数
using namespace std;
typedef struct ArcNode//边结点
{
int adjvex;//该边所指向顶点的位置 下标
struct ArcNode *nextarc;//指向下一条边的指针
}ArcNode;
typedef struct VNode//顶点信息
{
int data;
ArcNode *firstarc;//指向第一条依附于该顶点的边的指针
}VNode, AdjList[MVNum];
typedef struct//邻接表
{
AdjList vertices;
int vexnum, arcnum;//图的当前顶点数和边数
}DAGraph;
typedef struct StackNode
{
int data;
struct StackNode *next;
}StackNode,*LinkStack;
void InitStack(LinkStack &S)
{
S = NULL;
}
int Pop(LinkStack &S,int &e)
{
StackNode *p;
e = S->data;
p = S;
S = S->next;
delete p;
return e;
}
void Push(LinkStack &S, int e)
{
// cout << "b" << endl;
StackNode *p;
p = new StackNode;
p->data = e;
p->next = S;
S = p;
}
int StackEmpty(LinkStack S)
{
if (S == NULL)
return 1;
else
return 0;
}
int Get_Position(DAGraph G, int ch)
{
int i;
for (i = 0; i<G.vexnum; i++)
if (G.vertices[i].data == ch)
return i;
return -1;
}
DAGraph *Create_Graph()
{
DAGraph *G1;
int i, s, d, a, b;
ArcNode *p1;
G1 = new DAGraph;
cout << "请输入总顶点数:" << endl;
cin >> G1->vexnum;
cout << "请输入总边数:" << endl;
cin >> G1->arcnum;
cout << "输入顶点:" << endl;
for (i = 0; i < G1->vexnum; ++i)
{
cin >> G1->vertices[i].data;
G1->vertices[i].firstarc = NULL;
}
// for (i = 0; i < G1->vexnum; ++i)
// {
// cout << G1->vertices[i].data << " ";
// G1->vertices[i].firstarc = NULL;
// }
// cout<<endl;
for (i = 0; i < G1->arcnum; ++i)
{
cout << "输入一条边的起点和终点:" << endl;
cin >> s >> d;
a = Get_Position(*G1, s);
b = Get_Position(*G1, d);
p1 = new ArcNode;
p1->adjvex = b;
p1->nextarc = G1->vertices[a].firstarc;
G1->vertices[a].firstarc = p1;
cout << "e" << endl;//tiaoshi
}
// for (int i = 0; i < G1->arcnum; ++i){
// cout << "Node:" <<i<<"->";
// ArcNode *p1 = G1->vertices[i].firstarc;
// while(p1){
// cout << p1->adjvex <<" ";
// p1 = p1->nextarc;
// }
// cout<<endl;
// }
return G1;
}
void TopologicalSort(DAGraph G)
{
int i, m, k;
int topo[100] = {0};
int indegree[100] = {0};
ArcNode *p,*q;
LinkStack S;
InitStack(S);
for (i = 0; i < G.vexnum; i++)//统计每一个结点的入度
{
q = G.vertices[i].firstarc;
while (q != NULL)
{
int index = q->adjvex;
indegree[index]++;
q = q->nextarc;
}
}
for (i = 0; i < G.vexnum; ++i)
if (!indegree[i])
Push(S, i);
m = 0;
// cout << "a" << endl;//tioaoshi
while (StackEmpty(S) == 0)
{
Pop(S, i);
topo[m] = i;
// cout << "i" << i << endl;//tiaoshi
++m;
// cout << "a" << endl;//tioaoshi
p = G.vertices[i].firstarc;
// cout << "d" << endl;//tiaoshi
while (p != NULL)
{
// cout << "c" << endl;
k = p->adjvex;
--indegree[k];
if (indegree[k] == 0)
Push(S, k);
p = p->nextarc;
}
}
if (m < G.vexnum)
cout << "该有向图有回路" << endl;
else
{
cout << "拓扑排序为:" << endl;
for (i = 0; i < m; i++)
{
cout << topo[i]+1 << " ";
}
}
}
int main()
{
DAGraph *G;
G=Create_Graph();
TopologicalSort(*G);
return 0;
}