Warfare And Logistics
Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu
[Submit] [Go Back] [Status]
Download as PDF
The army of United Nations launched a new wave of air strikes on terrorist forces. The objective of the mission is to reduce enemy's logistical mobility. Each air strike will destroy a path and therefore increase the shipping cost of the shortest path between two enemy locations. The maximal damage is always desirable.
Let's assume that there are n enemy locations connected by m bidirectional paths, each with specific shipping cost. Enemy's total shipping cost is given as c = $ \sum^{{n}}_{{i=1}}$$ \sum^{{n}}_{{j=1}}$path(i, j) . Here path(i, j) is the shortest path between locations i and j . In case i and j are not connected, path(i, j) = L . Each air strike can only destroy one path. The total shipping cost after the strike is noted as c' . In order to maximized the damage to the enemy, UN's air force try to find the maximal c' - c .
Input
The first line ofeach input case consists ofthree integers: n , m , and L . 1 < n$ \le$100 , 1$ \le$m$ \le$1000 , 1$ \le$L$ \le$10$\scriptstyle \wedge$8 . Each ofthe following m lines contains three integers: a , b , s , indicating length of the path between a and b .
Output
For each case, output the total shipping cost before the air strike and the maximal total shipping cost after the strike. Output them in one line separated by a space.
Sample Input
4 6 1000
1 3 2
1 4 4
2 1 3
2 3 3
3 4 1
4 2 2
Sample Output
28 38
题意:给一个n个点m条边的图,求所有节点的最短路之和,然后删除一条边再求所有最短路之和,求这些中最大的。
先跑一遍最短路,跑完把每一条对应的边都枚举存起来(bel数组,sum数组存每个点的最短路),然后枚举删除,跑最短路就好了。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
using namespace std;
const int MAXN=110;
const int MAXE=2010;
const int INF=999999999;
int n,m,l;
struct EDGE
{
int v,next;
int dis;
}edge[MAXE];
struct HeadNode
{
int d,u;
bool operator < (const HeadNode& rhs) const
{
return d>rhs.d;
}
};
int head[MAXN],size,pre[MAXN];
ll sum[MAXN],ans0,ans,tmp;
bool bel[MAXN][MAXE],del[MAXE];
void init()
{
memset(head,-1,sizeof(head));
size=0;
}
void add_edge(int u,int v,int dis)
{
edge[size].v=v;
edge[size].dis=dis;
edge[size].next=head[u];
head[u]=size++;
}
int dist[MAXN];
bool vis[MAXN];
void dijkstra(int s)
{
memset(pre,-1,sizeof(pre));
memset(vis,0,sizeof(vis));
priority_queue<HeadNode> q;
for(int i=1;i<=n;i++)
dist[i]=INF;
dist[s]=0;
sum[s]=0;
q.push(HeadNode{0,s});
while(!q.empty())
{
HeadNode x=q.top();
q.pop();
int u=x.u;
if(vis[u])
continue;
vis[u]=1;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(dist[v]>dist[u]+edge[i].dis)
{
dist[v]=dist[u]+edge[i].dis;
pre[v]=i;
q.push(HeadNode{dist[v],v});
}
}
}
for(int i=1;i<=n;i++)
{
if(i!=s)
{
if(dist[i]<INF)
bel[s][pre[i]]=bel[s][pre[i]^1]=1;
else
dist[i]=l;
ans0+=dist[i];
sum[s]+=dist[i];
}
}
}
void dijkstra1(int s)
{
memset(vis,0,sizeof(vis));
priority_queue<HeadNode> q;
for(int i=1;i<=n;i++)
dist[i]=INF;
dist[s]=0;
q.push(HeadNode{0,s});
while(!q.empty())
{
HeadNode x=q.top();
q.pop();
int u=x.u;
if(vis[u])
continue;
vis[u]=1;
for(int i=head[u];i!=-1;i=edge[i].next)
{
if(del[i])
continue;
int v=edge[i].v;
if(dist[v]>dist[u]+edge[i].dis)
{
dist[v]=dist[u]+edge[i].dis;
q.push(HeadNode{dist[v],v});
}
}
}
ll k=0;
for(int i=1;i<=n;i++)
{
if(i!=s)
{
if(dist[i]==INF)
dist[i]=l;
k+=dist[i];
}
}
tmp=tmp-sum[s]+k;
}
int main()
{
int i;
while(scanf("%d%d%d",&n,&m,&l)!=EOF)
{
int u,v,d;
init();
while(m--)
{
scanf("%d%d%d",&u,&v,&d);
add_edge(u,v,d);
add_edge(v,u,d);
}
ans0=0;
memset(bel,0,sizeof(bel));
for(i=1;i<=n;i++)
dijkstra(i);
printf("%lld ",ans0);
ans=ans0;
memset(del,0,sizeof(del));
for(int i=0;i<size;i+=2)
{
del[i]=del[i^1]=1;
tmp=ans0;
for(int j=1;j<=n;j++)
if(bel[j][i])
dijkstra1(j);
del[i]=del[i^1]=0;
ans=max(ans,tmp);
}
printf("%lld\n",ans);
}
return 0;
}
本文介绍了一个算法问题,涉及计算敌方物流成本的变化。通过给定的图结构,首先计算所有节点间的最短路径总和,然后尝试删除每条边来观察总成本的变化,寻找能够使成本增加最多的边进行删除。
592

被折叠的 条评论
为什么被折叠?



