1.概念原理
利用卷积核,对数据矩阵进行相乘相加
每个通道对应一个核
2.代码实现
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
# prepare dataset
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# design model using class
'''
torch.nn.Conv2d
输入通道
输出通道
卷积核大小
padding填充
bias偏执
MaxPool2d
维度
'''
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
self.conv3 = torch.nn.Conv2d(20, 30, kernel_size=3)
self.pooling = torch.nn.MaxPool2d(2)
self.l1 = torch.nn.Linear(120, 64)
self.l2 = torch.nn.Linear(64, 32)
self.l3 = torch.nn.Linear(32, 10)
def forward(self, x):
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = F.relu((self.conv3(x)))
x = x.view(batch_size, -1) # 变化全连接类型输入
x = self.l1(x)
x = self.l2(x)
x = self.l3(x)
return x
model = Net()
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# training cycle forward, backward, update
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('accuracy on test set: %d %% ' % (100 * correct / total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
3.结果
[1, 300] loss: 1.682
[1, 600] loss: 0.345
[1, 900] loss: 0.225
accuracy on test set: 94 %
[2, 300] loss: 0.175
[2, 600] loss: 0.136
[2, 900] loss: 0.116
accuracy on test set: 96 %
[3, 300] loss: 0.107
[3, 600] loss: 0.096
[3, 900] loss: 0.089
accuracy on test set: 97 %
[4, 300] loss: 0.080
[4, 600] loss: 0.074
[4, 900] loss: 0.075
accuracy on test set: 98 %
[5, 300] loss: 0.064
[5, 600] loss: 0.066
[5, 900] loss: 0.062
accuracy on test set: 98 %
[6, 300] loss: 0.058
[6, 600] loss: 0.053
[6, 900] loss: 0.056
accuracy on test set: 98 %
[7, 300] loss: 0.051
[7, 600] loss: 0.048
[7, 900] loss: 0.050
accuracy on test set: 98 %
[8, 300] loss: 0.045
[8, 600] loss: 0.043
[8, 900] loss: 0.047
accuracy on test set: 98 %
[9, 300] loss: 0.039
[9, 600] loss: 0.038
[9, 900] loss: 0.045
accuracy on test set: 98 %
[10, 300] loss: 0.035
[10, 600] loss: 0.036
[10, 900] loss: 0.041
accuracy on test set: 98 %
本文详细介绍了使用PyTorch构建一个卷积神经网络来对MNIST数据集进行手写数字识别的过程,包括卷积层、池化层和全连接层的应用,以及训练和测试阶段的性能提升。

被折叠的 条评论
为什么被折叠?



