先介绍几种常用模板。
1.素数的高效打表(这里打了100万以内的素数表)
const int maxn=1000005;
const int _maxn=78499+5; //1000000内拥有的素数
int prime[_maxn];
bool vis[maxn];//待打表完成后,vis数组中将保存素数的直接判断
int sum[maxn];
int get_prime() { //高效素数打表
me(vis,true);
vis[0]=vis[1]=false;
int cnt=0;
for(int i=2;i<maxn;i++) {
if(vis[i]) prime[cnt++]=i;
for(int j=0;(j<cnt)&&(i*prime[j]<maxn);j++) {
vis[i*prime[j]]=false;
if(i%prime[j]==0)break;
}
}
return cnt;
}
2.MR大素数检验(一次icpc网络赛用到的,貌似挺有用的)
const int MAX_N=100000;
const int INF = 0x3f3f3f3f;
#define eps 1e-7
ll mod_mul(ll a, ll b, ll n) {
ll res = 0;
while (b) {
if (b & 1) res = (res + a) % n;
a = (a + a) % n;
b >>= 1;
}
return res;
}
ll mod_exp(ll a, ll b, ll n) {
ll res = 1;
while (b) {
if (b & 1) res = mod_mul(res, a, n);
a = mod_mul(a, a, n);
b >>= 1;
}
return res;
}
bool miller_rabin(ll n) {
if (n == 2 || n == 3 || n == 5 || n == 7 || n == 11) return true;
if (n == 1 || !(n % 2) || !(n % 3) || !(n % 5) || !(n % 7) || !(n % 11)) return false;
ll x, pre, u;
ll i, j, k = 0;
u = n - 1;
while (!(u & 1)) {
k++;
u >>= 1;
}
srand((ll)time(0));
for (i = 0; i <5; ++i) {
x = rand() % (n - 1) + 1;
if ((n%x) == 0) continue;
x = mod_exp(x, u, n);
pre = x;
for (j = 0; j < k; ++j) {
x = mod_mul(x, x, n);
if (x == 1 && pre != 1 && pre != n - 1) return false;
pre = x;
}
if (x != 1) return false;
}
return true;
}