Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Case 1: 14 1 4 Case 2:7 1 6
本题要注意的一个是最大值的查找,为防止超时不能用两个for暴力搜索,可以设置一个当前最大值maxv,左标l,右标r,和一个预设左标k,还有当前的求和值sum,当sum>maxv时将maxv、l、r值更新,当sum<0时说明以当前的左标无论如何也找不到更大的值了,所以预设左标k要更新为i+1.
本体坑点,输出时不按格式容易PE。
#include<iostream> #include<cstdio> using namespace std; typedef long long ll; const long maxn=100005; int main() { int t,no=1; int a[maxn]; cin>>t; while(t--) { long n; cin>>n; for(long i=0;i<n;i++) cin>>a[i]; ll sum=0,maxv=-100000000; long l=0,r=0,k=0; for(long i=0;i<n;i++) { sum+=a[i]; if(sum>maxv){l=k;r=i;maxv=sum;} if(sum<0){sum=0;k=i+1;} } printf("Case %d:\n",no++); cout<<maxv<<" "<<l+1<<" "<<r+1<<endl; //if(t!=0)cout<<endl; } return 0; }