B. Maximum Sum of Digits
You are given a positive integer n.
Let S(x) be sum of digits in base 10 representation of x, for example, S(123)=1+2+3=6, S(0)=0.
Your task is to find two integers a,b, such that 0≤a,b≤n, a+b=n and S(a)+S(b) is the largest possible among all such pairs.
Input
The only line of input contains an integer n (1≤n≤1012).
Output
Print largest S(a)+S(b) among all pairs of integers a,b, such that 0≤a,b≤n and a+b=n.
Examples
input
35
output
17
input
10000000000
output
91
Note
In the first example, you can choose, for example, a=17 and b=18, so that S(17)+S(18)=1+7+1+8=17. It can be shown that it is impossible to get a larger answer.
In the second test example, you can choose, for example, a=5000000001 and b=4999999999, with S(5000000001)+S(4999999999)=91. It can be shown that it is impossible to get a larger answer.
题意:告诉你 s(x) = x 这个数的各位位数之和。 如 s(123) = 1 + 2 + 3 = 6. 现在给你一个整数n, 要求你在 0 到 n 的范围内找两个数a 和 b 。是 a + b == n && s(a) + s(b) 最大;
思路:对于一个 数 x ,如果 x <= 18, 那么 将 x 分成两个数a, b .. s(a) + s(b) 就是等于 x 的。 所以我们可以对 一个数 x 的每一位进行计算, 如果当前位 是 9,那么 ans += 9, 如果不是,就向前一位借 1, 然后 ans += 10 + 当前位。
AC代码:
#include<bits/stdc++.h>
#define debug(x) cout << "[" << #x <<": " << (x) <<"]"<< endl
#define pii pair<int,int>
#define clr(a,b) memset((a),b,sizeof(a))
#define rep(i,a,b) for(int i = a;i < b;i ++)
#define pb push_back
#define MP make_pair
#define LL long long
#define INT(t) int t; scanf("%d",&t)
#define LLI(t) LL t; scanf("%I64d",&t)
using namespace std;
int main()
{
string n;
while(cin >> n){
int a[15] = {0};
int p = 0;
for(int i = 0;i < n.size();i ++)
a[p ++] = n[i] - '0';
LL ans = 0;
for(int i = p - 1;i >= 0;i --){
//debug(ans); debug(a[i]);
if(a[i] < 0){
a[i] += 10;
a[i - 1] --;
}
if(a[i] == 9)
ans += 9;
else {
if(i != 0){
ans += 10 + a[i];
a[i - 1] --;
}
else ans += a[i];
}
}
printf("%I64d\n",ans);
}
return 0;
}