http://www.cs.rit.edu/~ncs/color/t_convert.html

颜色转换算法:RGB与多种色彩空间互转
What color space we should used in image retrieval
L*a*b*
Because the eculedian distance of this space is the same as the distance of which human man perceived!

Color Conversion Algorithms


Contents


RGB to HSV & HSV to RGB

The Hue/Saturation/Value model was created by A. R. Smith in 1978. It is based on such intuitive color characteristics as tint, shade and tone (or family, purety and intensity). The coordinate system is cylindrical, and the colors are defined inside a hexcone. The hue value H runs from 0 to 360º. The saturation S is the degree of strength or purity and is from 0 to 1. Purity is how much white is added to the color, so S=1 makes the purest color (no white). Brightness V also ranges from 0 to 1, where 0 is the black.

There is no transformation matrix for RGB/HSV conversion, but the algorithm follows:

// r,g,b values are from 0 to 1
// h = [0,360], s = [0,1], v = [0,1]
// if s == 0, then h = -1 (undefined)
void RGBtoHSV( float r, float g, float b, float *h, float *s, float *v )
{
float min, max, delta;
	min = MIN( r, g, b );
max = MAX( r, g, b );
*v = max; // v
	delta = max - min;
	if( max != 0 )
*s = delta / max; // s
else {
// r = g = b = 0 // s = 0, v is undefined
*s = 0;
*h = -1;
return;
}
	if( r == max )
*h = ( g - b ) / delta; // between yellow & magenta
else if( g == max )
*h = 2 + ( b - r ) / delta; // between cyan & yellow
else
*h = 4 + ( r - g ) / delta; // between magenta & cyan
	*h *= 60;				// degrees
if( *h < 0 )
*h += 360;
}
void HSVtoRGB( float *r, float *g, float *b, float h, float s, float v )
{
int i;
float f, p, q, t;
	if( s == 0 ) {
// achromatic (grey)
*r = *g = *b = v;
return;
}
	h /= 60;			// sector 0 to 5
i = floor( h );
f = h - i; // factorial part of h
p = v * ( 1 - s );
q = v * ( 1 - s * f );
t = v * ( 1 - s * ( 1 - f ) );
	switch( i ) {
case 0:
*r = v;
*g = t;
*b = p;
break;
case 1:
*r = q;
*g = v;
*b = p;
break;
case 2
*r = p;
*g = v;
*b = t;
break;
case 3:
*r = p;
*g = q;
*b = v;
break;
case 4:
*r = t;
*g = p;
*b = v;
break;
default: // case 5:
*r = v;
*g = p;
*b = q;
break;
}
}

When programming in Java, use the RGBtoHSB and HSBtoRGB  functions from the java.awt.Color class.


RGB to YIQ & YIQ to RGB

The YIQ system is the color primary system adopted by National Television System Committee (NTSC) for color TV broadcasting. The YIQ color solid is made by a linear transformation of the RGB cube. Its purpose is to exploit certain characteristics of the human eye to maximize the utilization of a fixed bandwidth. The human visual system is more sensitive to changes in luminance than to changes in hue or saturation, and thus a wider bandwidth should be dedicated to luminance than to color information. Y is similar to perceived luminance, I and Q carry color information and some luminance information. The Y signal usually has 4.2 MHz bandwidth in a 525 line system. Originally, the I and Q had different bandwidths (1.5 and 0.6 MHz), but now they commonly have the same bandwidth of 1 MHz.

Here is the RGB -> YIQ conversion:

    [ Y ]     [ 0.299   0.587   0.114 ] [ R ]
    [ I ]  =  [ 0.596  -0.275  -0.321 ] [ G ]
    [ Q ]     [ 0.212  -0.523   0.311 ] [ B ]

Here is the YIQ -> RGB conversion:

    [ R ]     [ 1   0.956   0.621 ] [ Y ]
    [ G ]  =  [ 1  -0.272  -0.647 ] [ I ]
    [ B ]     [ 1  -1.105   1.702 ] [ Q ]


RGB to XYZ & XYZ to RGB

RGB values in a particular set of primaries can be transformed to and from CIE XYZ via a 3x3 matrix transform. These transforms involve tristimulus values, that is a set of three linear-light components that conform to the CIE color-matching functions. CIE XYZ is a special set of tristimulus values. In XYZ, any color is represented as a set of positive values.

To transform from XYZ to RGB (with D65 white point), the matrix transform used is [3]:

   [ R ]   [  3.240479 -1.537150 -0.498535 ]   [ X ]
   [ G ] = [ -0.969256  1.875992  0.041556 ] * [ Y ]
   [ B ]   [  0.055648 -0.204043  1.057311 ]   [ Z ].

The range for valid R, G, B values is [0,1]. Note, this matrix has negative coefficients. Some XYZ color may be transformed to RGB values that are negative or greater than one. This means that not all visible colors can be produced using the RGB system.

The inverse transformation matrix is as follows:

   [ X ]   [  0.412453  0.357580  0.180423 ]   [ R ] **
   [ Y ] = [  0.212671  0.715160  0.072169 ] * [ G ]
   [ Z ]   [  0.019334  0.119193  0.950227 ]   [ B ].


** February 20, 2000 - typo in this line of the matrix was corrected (0.189423 to 0.180423), thanks to Michal Karczmarek, University of Toronto

XYZ to CIE L*a*b* (CIELAB) & CIELAB to XYZ

CIE 1976 L*a*b* is based directly on CIE XYZ and is an attampt to linearize the perceptibility of color differences. The non-linear relations for L*, a*, and b* are intended to mimic the logarithmic response of the eye. Coloring information is referred to the color of the white point of the system, subscript n.

L* = 116 * (Y/Yn)1/3 - 16    for Y/Yn > 0.008856
L* = 903.3 * Y/Yn             otherwise

a* = 500 * ( f(X/Xn) - f(Y/Yn) )
b* = 200 * ( f(Y/Yn) - f(Z/Zn) )
    where f(t) = t
1/3      for t > 0.008856
              f(t) = 7.787 * t + 16/116    otherwise

Here Xn, Yn and Zn are the tristimulus values of the reference white.
The reverse transformation (for Y/Yn > 0.008856) is

X = Xn * ( P + a* / 500 ) 3
Y = Yn * P 3
Z = Zn * ( P - b* / 200 ) 3
    where P = (L* + 16) / 116


XYZ to CIELUV & CIELUV to XYZ

CIE 1976 L*u*u* (CIELUV) is based directly on CIE XYZ and is another attampt to linearize the perceptibility of color differences. The non-linear relations for L*, u*, and v* are given below:

L*116 * (Y/Yn)1/3 - 16
u* =  13L* * ( u' - un' )
v* =  13L* * ( v' - vn' )

The quantities un' and vn'  refer to the reference white or the light source; for the 2° observer and illuminant C,  un' = 0.2009, vn' = 0.4610 [ 1 ]. Equations for u' and v' are given below:

        u' = 4X / (X + 15Y + 3Z) = 4x / ( -2x + 12y + 3 )
        v' = 9Y / (X + 15Y + 3Z) = 9y / ( -2x + 12y + 3 ).

The transformation from (u',v') to (x,y) is:

        x = 27u' / ( 18u' - 48v' + 36 )
        y = 12v' / ( 18u' - 48v' + 36 ).

The transformation from CIELUV to XYZ is performed as following:

u' = u / ( 13L*) + un
v' = v / ( 13L* ) + vn
Y = (( L* + 16 ) / 116 )3
X = - 9Yu' / (( u' - 4 ) v' - u'v' )
Z = ( 9Y - 15v'Y - v'X ) / 3v'


#!/usr/bin/env perl # # Copyright (C) 2006 OpenWrt.org # Copyright (C) 2016 LEDE project # # This is free software, licensed under the GNU General Public License v2. # See /LICENSE for more information. # use strict; use warnings; use File::Basename; use File::Copy; use Text::ParseWords; @ARGV > 2 or die "Syntax: $0 <target dir> <filename> <hash> <url filename> [<mirror> ...]\n"; my $url_filename; my $target = glob(shift @ARGV); my $filename = shift @ARGV; my $file_hash = shift @ARGV; $url_filename = shift @ARGV unless $ARGV[0] =~ /:\/\//; my $scriptdir = dirname($0); my @mirrors; my $ok; my $check_certificate = $ENV{DOWNLOAD_CHECK_CERTIFICATE} eq "y"; $url_filename or $url_filename = $filename; sub localmirrors { my @mlist; open LM, "$scriptdir/localmirrors" and do { while (<LM>) { chomp $_; push @mlist, $_ if $_; } close LM; }; open CONFIG, "<".$ENV{'TOPDIR'}."/.config" and do { while (<CONFIG>) { /^CONFIG_LOCALMIRROR="(.+)"/ and do { chomp; my @local_mirrors = split(/;/, $1); push @mlist, @local_mirrors; }; } close CONFIG; }; my $mirror = $ENV{'DOWNLOAD_MIRROR'}; $mirror and push @mlist, split(/;/, $mirror); return @mlist; } sub which($) { my $prog = shift; my $res = `command -v $prog`; $res or return undef; return $res; } sub hash_cmd() { my $len = length($file_hash); my $cmd; $len == 64 and return "$ENV{'MKHASH'} sha256"; $len == 32 and return "$ENV{'MKHASH'} md5"; return undef; } sub download_cmd($) { my $url = shift; my $have_curl = 0; if (open CURL, "curl --version 2>/dev/null |") { if (defined(my $line = readline CURL)) { $have_curl = 1 if $line =~ /^curl /; } close CURL; } return $have_curl ? (qw(curl -k -f --connect-timeout 20 --retry 5 --location), $check_certificate ? () : '--insecure', shellwords($ENV{CURL_OPTIONS} || ''), $url) : (qw(wget --tries=5 --timeout=20 --output-document=-), $check_certificate ? () : '--no-check-certificate', shellwords($ENV{WGET_OPTIONS} || ''), $url) ; } my $hash_cmd = hash_cmd(); $hash_cmd or ($file_hash eq "skip") or die "Cannot find appropriate hash command, ensure the provided hash is either a MD5 or SHA256 checksum.\n"; sub download { my $mirror = shift; my $download_filename = shift; $mirror =~ s!/$!!; if ($mirror =~ s!^file://!!) { if (! -d "$mirror") { print STDERR "Wrong local cache directory -$mirror-.\n"; cleanup(); return; } if (! -d "$target") { system("mkdir", "-p", "$target/"); } if (! open TMPDLS, "find $mirror -follow -name $filename 2>/dev/null |") { print("Failed to search for $filename in $mirror\n"); return; } my $link; while (defined(my $line = readline TMPDLS)) { chomp ($link = $line); if ($. > 1) { print("$. or more instances of $filename in $mirror found . Only one instance allowed.\n"); return; } } close TMPDLS; if (! $link) { print("No instances of $filename found in $mirror.\n"); return; } print("Copying $filename from $link\n"); copy($link, "$target/$filename.dl"); $hash_cmd and do { if (system("cat '$target/$filename.dl' | $hash_cmd > '$target/$filename.hash'")) { print("Failed to generate hash for $filename\n"); return; } }; } else { my @cmd = download_cmd("$mirror/$download_filename"); print STDERR "+ ".join(" ",@cmd)."\n"; open(FETCH_FD, '-|', @cmd) or die "Cannot launch curl or wget.\n"; $hash_cmd and do { open MD5SUM, "| $hash_cmd > '$target/$filename.hash'" or die "Cannot launch $hash_cmd.\n"; }; open OUTPUT, "> $target/$filename.dl" or die "Cannot create file $target/$filename.dl: $!\n"; my $buffer; while (read FETCH_FD, $buffer, 1048576) { $hash_cmd and print MD5SUM $buffer; print OUTPUT $buffer; } $hash_cmd and close MD5SUM; close FETCH_FD; close OUTPUT; if ($? >> 8) { print STDERR "Download failed.\n"; cleanup(); return; } } $hash_cmd and do { my $sum = `cat "$target/$filename.hash"`; $sum =~ /^(\w+)\s*/ or die "Could not generate file hash\n"; $sum = $1; if ($sum ne $file_hash) { print STDERR "Hash of the downloaded file does not match (file: $sum, requested: $file_hash) - deleting download.\n"; cleanup(); return; } }; unlink "$target/$filename"; system("mv", "$target/$filename.dl", "$target/$filename"); cleanup(); } sub cleanup { unlink "$target/$filename.dl"; unlink "$target/$filename.hash"; } @mirrors = localmirrors(); foreach my $mirror (@ARGV) { if ($mirror =~ /^\@SF\/(.+)$/) { # give sourceforge a few more tries, because it redirects to different mirrors for (1 .. 5) { push @mirrors, "https://downloads.sourceforge.net/$1"; } } elsif ($mirror =~ /^\@OPENWRT$/) { # use OpenWrt source server directly } elsif ($mirror =~ /^\@DEBIAN\/(.+)$/) { push @mirrors, "https://ftp.debian.org/debian/$1"; push @mirrors, "https://mirror.leaseweb.com/debian/$1"; push @mirrors, "https://mirror.netcologne.de/debian/$1"; } elsif ($mirror =~ /^\@APACHE\/(.+)$/) { push @mirrors, "https://mirror.netcologne.de/apache.org/$1"; push @mirrors, "https://mirror.aarnet.edu.au/pub/apache/$1"; push @mirrors, "https://mirror.csclub.uwaterloo.ca/apache/$1"; push @mirrors, "https://archive.apache.org/dist/$1"; push @mirrors, "http://mirror.cogentco.com/pub/apache/$1"; push @mirrors, "http://mirror.navercorp.com/apache/$1"; push @mirrors, "http://ftp.jaist.ac.jp/pub/apache/$1"; push @mirrors, "ftp://apache.cs.utah.edu/apache.org/$1"; push @mirrors, "ftp://apache.mirrors.ovh.net/ftp.apache.org/dist/$1"; } elsif ($mirror =~ /^\@GITHUB\/(.+)$/) { # give github a few more tries (different mirrors) for (1 .. 5) { push @mirrors, "https://raw.githubusercontent.com/$1"; } } elsif ($mirror =~ /^\@GNU\/(.+)$/) { push @mirrors, "https://mirror.csclub.uwaterloo.ca/gnu/$1"; push @mirrors, "https://mirror.netcologne.de/gnu/$1"; push @mirrors, "http://ftp.kddilabs.jp/GNU/gnu/$1"; push @mirrors, "http://www.nic.funet.fi/pub/gnu/gnu/$1"; push @mirrors, "http://mirror.internode.on.net/pub/gnu/$1"; push @mirrors, "http://mirror.navercorp.com/gnu/$1"; push @mirrors, "ftp://mirrors.rit.edu/gnu/$1"; push @mirrors, "ftp://download.xs4all.nl/pub/gnu/$1"; push @mirrors, "https://ftp.gnu.org/gnu/$1"; } elsif ($mirror =~ /^\@SAVANNAH\/(.+)$/) { push @mirrors, "https://mirror.netcologne.de/savannah/$1"; push @mirrors, "https://mirror.csclub.uwaterloo.ca/nongnu/$1"; push @mirrors, "http://ftp.acc.umu.se/mirror/gnu.org/savannah/$1"; push @mirrors, "http://nongnu.uib.no/$1"; push @mirrors, "http://ftp.igh.cnrs.fr/pub/nongnu/$1"; push @mirrors, "ftp://cdimage.debian.org/mirror/gnu.org/savannah/$1"; push @mirrors, "ftp://ftp.acc.umu.se/mirror/gnu.org/savannah/$1"; } elsif ($mirror =~ /^\@KERNEL\/(.+)$/) { my @extra = ( $1 ); if ($filename =~ /linux-\d+\.\d+(?:\.\d+)?-rc/) { push @extra, "$extra[0]/testing"; } elsif ($filename =~ /linux-(\d+\.\d+(?:\.\d+)?)/) { push @extra, "$extra[0]/longterm/v$1"; } foreach my $dir (@extra) { push @mirrors, "https://cdn.kernel.org/pub/$dir"; push @mirrors, "https://download.xs4all.nl/ftp.kernel.org/pub/$dir"; push @mirrors, "https://mirrors.mit.edu/kernel/$dir"; push @mirrors, "http://ftp.nara.wide.ad.jp/pub/kernel.org/$dir"; push @mirrors, "http://www.ring.gr.jp/archives/linux/kernel.org/$dir"; push @mirrors, "ftp://ftp.riken.jp/Linux/kernel.org/$dir"; push @mirrors, "ftp://www.mirrorservice.org/sites/ftp.kernel.org/pub/$dir"; } } elsif ($mirror =~ /^\@GNOME\/(.+)$/) { push @mirrors, "https://download.gnome.org/sources/$1"; push @mirrors, "https://mirror.csclub.uwaterloo.ca/gnome/sources/$1"; push @mirrors, "http://ftp.acc.umu.se/pub/GNOME/sources/$1"; push @mirrors, "http://ftp.kaist.ac.kr/gnome/sources/$1"; push @mirrors, "http://www.mirrorservice.org/sites/ftp.gnome.org/pub/GNOME/sources/$1"; push @mirrors, "http://mirror.internode.on.net/pub/gnome/sources/$1"; push @mirrors, "http://ftp.belnet.be/ftp.gnome.org/sources/$1"; push @mirrors, "ftp://ftp.cse.buffalo.edu/pub/Gnome/sources/$1"; push @mirrors, "ftp://ftp.nara.wide.ad.jp/pub/X11/GNOME/sources/$1"; } else { push @mirrors, $mirror; } } push @mirrors, 'https://sources.cdn.openwrt.org'; push @mirrors, 'https://sources.openwrt.org'; push @mirrors, 'https://mirror2.openwrt.org/sources'; if (-f "$target/$filename") { $hash_cmd and do { if (system("cat '$target/$filename' | $hash_cmd > '$target/$filename.hash'")) { die "Failed to generate hash for $filename\n"; } my $sum = `cat "$target/$filename.hash"`; $sum =~ /^(\w+)\s*/ or die "Could not generate file hash\n"; $sum = $1; cleanup(); exit 0 if $sum eq $file_hash; die "Hash of the local file $filename does not match (file: $sum, requested: $file_hash) - deleting download.\n"; unlink "$target/$filename"; }; } while (!-f "$target/$filename") { my $mirror = shift @mirrors; $mirror or die "No more mirrors to try - giving up.\n"; download($mirror, $url_filename); if (!-f "$target/$filename" && $url_filename ne $filename) { download($mirror, $filename); } } $SIG{INT} = \&cleanup; 每一句都要注释,将注释和原代码一起给出
07-16
基于蒙特卡洛法的规模化电动车有序充放电及负荷预测(Python&Matlab实现)内容概要:本文围绕“基于蒙特卡洛法的规模化电动车有序充放电及负荷预测”展开,结合Python和Matlab编程实现,重点研究大规模电动汽车在电网中的充放电行为建模与负荷预测方法。通过蒙特卡洛模拟技术,对电动车用户的出行规律、充电需求、接入时间与电量消耗等不确定性因素进行统计建模,进而实现有序充放电策略的优化设计与未来负荷曲线的精准预测。文中提供了完整的算法流程与代码实现,涵盖数据采样、概率分布拟合、充电负荷聚合、场景仿真及结果可视化等关键环节,有效支撑电网侧对电动车负荷的科学管理与调度决策。; 适合人群:具备一定电力系统基础知识和编程能力(Python/Matlab),从事新能源、智能电网、交通电气化等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究大规模电动车接入对配电网负荷特性的影响;②设计有序充电策略以平抑负荷波动;③实现基于概率模拟的短期或长期负荷预测;④为电网规划、储能配置与需求响应提供数据支持和技术方案。; 阅读建议:建议结合文中提供的代码实例,逐步运行并理解蒙特卡洛模拟的实现逻辑,重点关注输入参数的概率分布设定与多场景仿真的聚合方法,同时可扩展加入分时电价、用户行为偏好等实际约束条件以提升模型实用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值