- 博客(1)
- 收藏
- 关注
原创 聚类特征变量选取、聚类算法与效果评价简述
对data的各个feature进行预处理 1. feature的选择:用相关性、基尼系数、信息熵、统计检验或是随机森林选取最为重要的特征变量 2. 如果需要,对一些特征变量进行scaling 3. 对数据进行变换:离散傅里叶变换或离散小波变换 4. 可以对数据进行降维处理,映射到低维度空间进行展示,观察数据形状,帮助选择聚类算法 降维的一些选择: 线性方法,PCA 非线性特征十分
2016-05-14 15:17:25
25794
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅