第1章 DataX简介
1.1 DataX概述
DataX 是阿里巴巴开源的一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle等)、HDFS、Hive、ODPS、HBase、FTP等各种异构数据源之间稳定高效的数据同步功能。
源码地址:https://github.com/alibaba/DataX
1.2 DataX支持的数据源
DataX目前已经有了比较全面的插件体系,主流的RDBMS数据库、NOSQL、大数据计算系统都已经接入,目前支持数据如下图。
类型 |
数据源 |
Reader(读) |
Writer(写) |
RDBMS 关系型数据库 |
MySQL |
√ |
√ |
Oracle |
√ |
√ |
|
OceanBase |
√ |
√ |
|
SQLServer |
√ |
√ |
|
PostgreSQL |
√ |
√ |
|
DRDS |
√ |
√ |
|
通用RDBMS |
√ |
√ |
|
阿里云数仓数据存储 |
ODPS |
√ |
√ |
ADS |
√ |
||
OSS |
√ |
√ |
|
OCS |
√ |
√ |
|
NoSQL数据存储 |
OTS |
√ |
√ |
Hbase0.94 |
√ |
√ |
|
Hbase1.1 |
√ |
√ |
|
Phoenix4.x |
√ |
√ |
|
Phoenix5.x |
√ |
√ |
|
MongoDB |
√ |
√ |
|
Hive |
√ |
√ |
|
Cassandra |
√ |
√ |
|
无结构化数据存储 |
TxtFile |
√ |
√ |
FTP |
√ |
√ |
|
HDFS |
√ |
√ |
|
Elasticsearch |
√ |
||
时间序列数据库 |
OpenTSDB |
√ |
|
TSDB |
√ |
√ |
第2章 DataX架构原理
2.1 DataX设计理念
为了解决异构数据源同步问题,DataX将复杂的网状的同步链路变成了星型数据链路,DataX作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源的时候,只需要将此数据源对接到DataX,便能跟已有的数据源做到无缝数据同步。
2.2 DataX框架设计
DataX本身作为离线数据同步框架,采用Framework + plugin架构构建。将数据源读取和写入抽象成为Reader/Writer插件,纳入到整个同步框架中。
2.3 DataX运行流程
下面用一个DataX作业生命周期的时序图说明DataX的运行流程、核心概念以及每个概念之间的关系。
2.4 DataX调度决策思路
举例来说,用户提交了一个DataX作业,并且配置了总的并发度为20,目的是对一个有100张分表的mysql数据源进行同步。DataX的调度决策思路是:
(1)DataX Job根据分库分表切分策略,将同步工作分成100个Task。
(2)根据配置的总的并发度20,以及每个Task Group的并发度5,DataX计算共需要分配4个TaskGroup。
(3)4个TaskGroup平分100个Task,每一个TaskGroup负责运行25个Task。
2.5 DataX与Sqoop对比
功能 |
DataX |
Sqoop |
运行模式 |
单进程多线程 |
MR |
分布式 |
不支持,可以通过调度系统规避 |
支持 |
流控 |
有流控功能 |
需要定制 |
统计信息 |
已有一些统计,上报需定制 |
没有,分布式的数据收集不方便 |
数据校验 |
在core部分有校验功能 |
没有,分布式的数据收集不方便 |
监控 |
需要定制 |
需要定制 |
第3章 DataX部署
1)下载DataX安装包并上传到hadoop102的/opt/software
下载地址:http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz
2)解压datax.tar.gz到/opt/module
[shuidi@hadoop102 software]$ tar -zxvf datax.tar.gz -C /opt/module/
3)自检,执行如下命令
[shuidi@hadoop102 ~]$ python /opt/module/datax/bin/datax.py /opt/module/datax/job/job.json
出现如下内容,则表明安装成功
2024-06-27 19:42:53.328 [job-0] INFO JobContainer -
任务启动时刻 : 2024-06-27 19:42:43
任务结束时刻 : 2024-06-27 19:42:53
任务总计耗时 : 10s
任务平均流量 : 253.91KB/s
记录写入速度 : 10000rec/s
读出记录总数 : 100000
读写失败总数 : 0
第4章 DataX使用
4.1 DataX使用概述
4.1.1 DataX任务提交命令
DataX的使用十分简单,用户只需根据自己同步数据的数据源和目的地选择相应的Reader和Writer,并将Reader和Writer的信息配置在一个json文件中,然后执行如下命令提交数据同步任务即可。
[shuidi@hadoop102 datax]$ python bin/datax.py path/to/your/job.json
4.2.2 DataX配置文件格式
可以使用如下命名查看DataX配置文件模板。
[shuidi@hadoop102 software]$ cd /opt/module/datax/
[shuidi@hadoop102 datax]$ python bin/datax.py -r mysqlreader -w hdfswriter
配置文件模板如下,json最外层是一个job,job包含setting和content两部分,其中setting用于对整个job进行配置,content用户配置数据源和目的地。
Reader和Writer的具体参数可参考官方文档,地址如下:
https://github.com/alibaba/DataX/blob/master/README.md
4.2 同步MySQL数据到HDFS案例
案例要求:同步gmall数据库中base_province表数据到HDFS的/base_province目录
需求分析:要实现该功能,需选用MySQLReader和HDFSWriter,MySQLReader具有两种模式分别是TableMode和QuerySQLMode,前者使用table,column,where等属性声明需要同步的数据;后者使用一条SQL查询语句声明需要同步的数据。
下面分别使用两种模式进行演示。
4.2.1 MySQLReader之TableMode
1)编写配置文件
(1)创建配置文件base_provin