一、摘要
在集合系列的第一章,咱们了解到,Map的实现类有HashMap、LinkedHashMap、TreeMap、IdentityHashMap、WeakHashMap、Hashtable、Properties等等。
关于HashMap,一直都是一个非常热门的话题,只要你出去面试,我保证一定少不了它!
本文主要结合JDK1.7和JDK1.8的区别,就HashMap的数据结构和实现功能,进行深入探讨,废话也不多说了,直奔主题!
二、简介
在程序编程的时候,HashMap是一个使用非常频繁的容器类,它允许键值都放入null元素。除该类方法未实现同步外,其余跟Hashtable大致相同,但跟TreeMap不同,该容器不保证元素顺序,根据需要该容器可能会对元素重新哈希,元素的顺序也会被重新打散,因此不同时间迭代同一个HashMap的顺序可能会不同。
HashMap容器,实质还是一个哈希数组结构,但是在元素插入的时候,存在发生hash冲突的可能性;
对于发生Hash冲突的情况,冲突有两种实现方式,一种开放地址方式(当发生hash冲突时,就继续以此继续寻找,直到找到没有冲突的hash值),另一种是拉链方式(将冲突的元素放入链表)。Java HashMap采用的就是第二种方式,拉链法。
在jdk1.7中,HashMap主要是由数组+链表组成,当发生hash冲突的时候,就将冲突的元素放入链表中。
从jdk1.8开始,HashMap主要是由数组+链表+红黑树实现的,相比jdk1.7而言,多了一个红黑树实现。当链表长度超过8的时候,就将链表变成红黑树,如图所示。
关于红黑树的实现,因为篇幅太长,在《集合系列》文章中红黑树设计,也有所介绍,这里就不在详细介绍了。
三、源码解析
直接打开HashMap的源码分析,可以看到,主要有5个关键参数:
- threshold:表示容器所能容纳的key-value对极限。
- loadFactor:负载因子。
- modCount:记录修改次数。
- size:表示实际存在的键值对数量。
- table:一个哈希桶数组,键值对就存放在里面。
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable {
//所能容纳的key-value对极限
int threshold;
//负载因子
final float loadFactor;
//记录修改次数
int modCount;
//实际存在的键值对数量
int size;
//哈希桶数组
transient Node<K,V>[] table;
}
接着来看看Node
这个类,Node
是HashMap
的一个内部类,实现了Map.Entry
接口,本质是就是一个映射(键值对)
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;//hash值
final K key;//k键
V value;//value值
Node<K,V> next;//链表中下一个元素
}
在HashMap的数据结构中,有两个参数可以影响HashMap的性能:初始容量(inital capacity)和负载因子(load factor)。
初始容量(inital capacity)是指table的初始长度length(默认值是16);
负载因子(load factor)用指自动扩容的临界值(默认值是0.75);
threshold
是HashMap
所能容纳的最大数据量的Node
(键值对)个数,计算公式threshold = capacity * Load factor
。当entry的数量超过capacity*load_factor
时,容器将自动扩容并重新哈希,扩容后的HashMap
容量是之前容量的两倍,所以数组的长度总是2的n次方。
初始容量和负载因子也可以修改,具体实现方式,可以在对象初始化的时候,指定参数,比如:
Map map = new HashMap(int initialCapacity, float loadFactor);
但是,默认的负载因子0.75是对空间和时间效率的一个平衡选择,建议大家不要修改,除非在时间和空间比较特殊的情况下,如果内存空间很多而又对时间效率要求很高,可以降低负载因子Load factor的值;相反,如果内存空间紧张而对时间效率要求不高,可以增加负载因子loadFactor的值,这个值可以大于1。 同时,对于插入元素较多的场景,可以将初始容量设大,减少重新哈希的次数。
HashMap的内部功能实现有很多,本文主要从以下几点,进行逐步分析。
- 通过K获取数组下标;
- put方法的详细执行;
- resize扩容过程;
- get方法获取参数值;
- remove删除元素;
3.1、通过K获取数组下标
不管增加、删除还是查找键值对,定位到数组的位置都是很关键的第一步,打开hashMap的任意一个增加、删除、查找方法,从源码可以看出,通过key
获取数组下标,主要做了3步操作,其中length
指的是容器数组的大小。
源码部分:
/**获取hash值方法*/
static final int hash(Object key) {
int h;
// h = key.hashCode() 为第一步 取hashCode值(jdk1.7)
// h ^ (h >>> 16) 为第二步 高位参与运算(jdk1.7)
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);//jdk1.8
}
/**获取数组下标方法*/
static int indexFor(int h, int length) {
//jdk1.7的源码,jdk1.8没有这个方法,但是实现原理一样的
return h & (length-1); //第三步 取模运算
}
3.2、put方法的详细执行
put(K key, V value)方法是将指定的key, value对添加到map里。该方法首先会对map做一次查找,看是否包含该K,如果已经包含则直接返回;如果没有找到,则将元素插入容器。具体插入过程如下:
具体执行步骤
- 1、判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;
- 2、根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加;
- 3、当table[i]不为空,判断table[i]的首个元素是否和传入的key一样,如果相同直接覆盖value;
- 4、判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对;
- 5、遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
- 6、插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容操作;
put方法源码部分
/**
* put方法
*/
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
插入元素方法
/**
* 插入元素方法
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//1、判断数组table是否为空或为null
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//2、判断数组下标table[i]==null
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
//3、判断table[i]的首个元素是否和传入的key一样
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//4、判断table[i] 是否为treeNode
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//5、遍历table[i],判断链表长度是否大于8
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {