全文共4049字,预计学习时长8分钟
图片来源:pexels.com/@pixabay
当下,人工智能已逐渐成为影响全球经济的主流因素,而在人工智能的众多细分领域中,计算机视觉发展尤为迅猛。
工业4.0时代
人工智能和机器人技术的进步正在减少机器与人类的差距,但制造出完全类人的机器仍需经历较长的发展历程。工业4.0时代,自动驾驶汽车和无人机正加快发展,同时如相机和图像传感器等先进设备也有革新态势。
先进技术使机器人或自动程序代替人类,将人类从枯燥的简单工作中解放出来,而人类因此获得时间和空间去追求更有价值的工作。
数据是关键
从技术的角度来看,数据是成功组织正运行的数字化转型项目的基石。数据可被认为是人与机器之间的最佳纽带。无论是数字、文本或更加复杂的数据如音频、视频和图像,数字信息使人们可以与机器交流——反之亦然——同时也使机器能“理解”周围的世界。
图片来源:pexels.com/@naveen-annam-734127
什么是计算机视觉
正如术语本身所示,计算机视觉是指一项帮助计算机、软件、机器人或其它任何设备获取、分析及处理图片的技术。图片的可能来源不一而足,可能是照片、视频、3D设备、医疗或工业扫描器等等。计算机视觉旨在帮助这些设备——包括无人机、交通机器或仅仅是一台计算机——根据所获信息进行“可视”和回应。由于计算机视觉的复杂性并考虑到其终端使用案例,其难度常被拿来与语音识别作比较。
你可能对计算机视觉这个概念及其背后的技术不太了解。但是,其中的一项技术光学字符识别OCR应用十分广泛,因为其常用于识别照片中的文字信息或有一定年份的扫描文件。几十年来,银行业为读取支票内容一直使用笔迹识别技术。物品识别长期应用于许多行业,以自动控制质量或为找出一些样品分类工厂产品。
某种意义上,计算机视觉与人工智能联系紧密,因为设备不仅需要识别信息,还要在识别后立即分析和解释所见内容。这是为了采取合适的措施,与周边环境互动。
上世纪60年代早期开始的研究推动了今天人工智能和物联网技术的发展,而计算机视觉也是如此。据夏季视觉项目报告,“构建一个先进的足够复杂的图案识别系统”在1966年得以实现。