Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 7 9 / \ 3 5
For example, the lowest common ancestor (LCA) of nodes 2
and 8
is 6
. Another example is LCA of nodes 2
and 4
is 2
, since a node can be a descendant of itself according to the LCA definition.
这道题因为二查搜索树的缘故简单很多,:
1. 如果root的值在pq之间,则root就是lca
2.如果pq 的值都小于root,那么pq就在root的左子树上,自然他们的lca也在root的左子树上
3.如果pq的值都大于root,那么pq就在root的右子树上,自然他们的lca也在root的右子树上
所以最后的程序是:
class Solution(object):
def lowestCommonAncestor(self, root, p, q):
"""
:type root: TreeNode
:type p: TreeNode
:type q: TreeNode
:rtype: TreeNode
"""
if p.val == q.val:
return p
elif p.val >q.val:
maxn = p
minn = q
else :
maxn = q
minn = p
if maxn.val >root.val:
if minn.val <=root.val:
return root
else :
return self.lowestCommonAncestor(root.right, p, q)
elif maxn.val == root.val:
return root
else :
return self.lowestCommonAncestor(root.left, p, q)