Choose and divide UVA - 10375

本文介绍了一种使用唯一分解定理解决大数阶乘比值问题的方法,并通过一个具体的编程实例展示了如何实现该算法。该方法适用于需要高精度计算大数阶乘比值的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接:https://vjudge.net/problem/UVA-10375

题意:给定公式 C(m,n) = m!/((m-n)!*n!)),给定4个数p,q,r,s,求C(p,q)/C(r,s);

思路:为阶层的每一个数用唯一分解定理分解。

这种大数相除精度高的题要用唯一分解定理。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<vector>
#include<cmath>
using namespace std;

int prime[10005],e[10005];
vector<int> vec;

void Prime(){
	for(int i = 2;i<=10000;++i){
		prime[i] = 1;
	}
	for(int  i = 2;i<=10000;++i){
		if(prime[i] == 1){
			vec.push_back(i);
			for(int j = i*i;j<=10000;j+=i)
			prime[i] = 0;
		}
	}
}


void solve(int n,int d){        //唯一分解定理主体部分 
	for(int i = 0;i<vec.size();++i){
		while(n%vec[i] == 0){
			e[i] += d;
			n /= vec[i];
		}
		if(n == 1)
		return;
	}
}

void add(int n, int d) {
  for(int i = 1; i <= n; i++)
    solve(i, d);
}

int main(){
	int p,q,r,s;
	double ans;
	Prime();
	while(cin>>p>>q>>r>>s){
	memset(e,0,sizeof(e));
	add(p,1);
	add(p-q,-1);
	add(q,-1);
	add(r,-1);
	add(r-s,1);
	add(s,1);
	ans = 1.0;
	for(int i = 0;i<vec.size();++i){
		ans *= pow(vec[i],e[i]);
	}
	printf("%.5lf\n",ans);}
	return 0;
}

 

 

 

 

 

 

 

 

### K-Means聚类算法中的分治法实现与优化 #### 分治策略概述 分治法是一种通过将一个问题分解成若干个小规模子问题来求解的技术。对于K-Means聚类算法而言,可以采用分治策略减少计算量并提高效率。 #### 数据分割 数据集可以根据空间分布特性被划分为多个互不相交的小区域[^1]。这种划分可以通过预先设定边界框或其他几何形状完成。每个子区域内独立运行标准的K-Means过程: ```python import numpy as np from sklearn.cluster import MiniBatchKMeans def divide_data(X, num_partitions=4): """ 将输入的数据X按照指定数量分区 """ n_samples = X.shape[0] indices = np.random.permutation(n_samples) partition_size = int(np.ceil(n_samples / num_partitions)) partitions = [] for i in range(num_partitions): start_idx = i * partition_size end_idx = min((i + 1) * partition_size, n_samples) partitions.append(X[indices[start_idx:end_idx]]) return partitions partitions = divide_data(data_matrix, num_partitions=8) local_clusters = {} for idx, part in enumerate(partitions): mbkmeans = MiniBatchKMeans(n_clusters=k).fit(part) local_clusters[idx] = (mbkmeans.cluster_centers_, mbkmeans.labels_) ``` #### 局部中心点聚合 各个子区间的局部质心会被收集起来作为全局范围内的初始簇中心候选集合。接着利用这些新的种子再次执行完整的K-Means迭代直到收敛: ```python global_centroids = np.vstack([centers for centers,_ in local_clusters.values()]) final_kmeans = MiniBatchKMeans(n_clusters=k).fit(global_centroids) final_labels = final_kmeans.predict(data_matrix) ``` 这种方法不仅能够加速训练速度而且有助于克服大规模数据集中存在的内存瓶颈问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值