Stable Diffusion: Lora篇

前面提到,在提示词中可以使用LoRA并设置权重。LoRA是Low-Rank Adaptation的简写,直译为轻量级微调,是一种通用的AI大模型微调技术,通过LoRA使用可以对Stable Diffusion模型输出进行微调型,更加随心所欲地实现定制华输出。LoRA模型无法单独使用,需要选择一个Stable Diffusion模型作为基础,再使用LoRA调整基础模型,从而生成微调后的图片。同时,如果Stable Diffusion模型是XL版本的,相应的LoRA也需要选择XL版本。

在前面的模型篇中,推荐著名的模型下载的地址LiblibAI·哩布哩布AI - 中国领先的AI创作平台。注意点击最右方“全部类型”下拉选择框,筛选类型为LORA的模型文件。

图片

模型文件一般不大(100-200MB为主),下载后,将模型文件放在Stable Diffusion(或绘世启动器)安装目录的models\Lora文件夹下(如果使用Easy Diffusion,则是在安装目录的models\lora文件夹下,其他也差不多),即完成安装。

在Stable Diffusion主页面,先点击Lora,再点击右边的刷新按钮,即可完成LoRA模型的引入。

### Stable Diffusion LoRA Model Resources and Recommendations For users interested in exploring or utilizing LoRA models with Stable Diffusion, several key resources are available that can significantly enhance the capabilities of text-to-image generation tasks. LaVi-Bridge integrates multiple pretrained language models alongside generative visual models specifically designed for this purpose; notably supporting combinations such as T5-Large + U-Net (SD) and Llama-2 + U-Net (SD)[^1]. This indicates a strong compatibility between these frameworks and Stable Diffusion. #### Key Resource Platforms Several platforms offer curated collections of LoRA models compatible with Stable Diffusion: - **Hugging Face Hub**: A comprehensive repository where developers share pre-trained models including those optimized for use within Stable Diffusion pipelines. - **Civitai**: Specializes in AI art tools offering both free and premium access to various types of diffusion-based models like LoRAs which integrate seamlessly into existing workflows involving Stable Diffusion. #### Recommended Practices When Using LoRA Models With Stable Diffusion To maximize performance while minimizing computational overhead when working with LoRA models on top of Stable Diffusion: - Utilize lightweight adapters instead of retraining entire networks from scratch whenever possible since they allow fine-tuning without altering original weights thus preserving generalization properties across diverse datasets. - Experimentation with different adapter configurations may yield better results depending upon specific application requirements ensuring optimal trade-offs between speed versus quality metrics during inference phases. ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "stabilityai/stable-diffusion-2-base" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler).to("cuda") prompt = "A fantasy landscape" image = pipe(prompt).images[0] image.save("./fantasy_landscape.png") ``` --related questions-- 1. What are some best practices for training custom LoRA models? 2. How do adapter mechanisms improve efficiency compared to full network modifications? 3. Can you provide examples of successful applications using LaVi-Bridge's supported model pairs? 4. Are there any limitations associated with integrating third-party LoRA models into Stable Diffusion projects?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

duhaining1976

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值