机器学习实战 多变量线性回归的实现

多元线性回归算法详解
                多元线性回归其实方法和单变量线性回归差不多,我们这里直接给出算法:

computeCostMulti函数

function J = computeCostMulti(X, y, theta) m = length(y); % number of training examples J = 0; predictions = X * theta; J = 1/(2*m)*(predictions - y)' * (predictions - y);end

gradientDescentMulti函数

function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters) m = length(y); % number of training examples J_history = zeros(num_iters, 1); feature_number = size(X,2); t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值