Segments

Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.

Input

Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1 y1 x2y2 follow, in which (x1y1) and (x2y2) are the coordinates of the two endpoints for one of the segments.

Output

For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.

Sample Input
3
2
1.0 2.0 3.0 4.0
4.0 5.0 6.0 7.0
3
0.0 0.0 0.0 1.0
0.0 1.0 0.0 2.0
1.0 1.0 2.0 1.0
3
0.0 0.0 0.0 1.0
0.0 2.0 0.0 3.0
1.0 1.0 2.0 1.0
Sample Output
Yes!
Yes!
No!


#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
//#include<bits/stdc++.h>
#define eps 1e-8
using namespace std;
struct Line
{
   double x1,y1;
   double x2,y2;
}line[110];
double dis(double x1,double y1,double x2,double y2)
{
    return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
double cross(double x1,double y1,double x2,double y2,double x,double y)
{
    return (x2-x1)*(y-y1)-(x-x1)*(y2-y1);
}
int t,n;
bool  jude(double x1,double y1,double x2,double y2)
{
    if(dis(x1,y1,x2,y2)<eps) return 0;
    for(int i=0;i<n;i++)
    {
        if(cross(x1,y1,x2,y2,line[i].x1,line[i].y1)*
           cross(x1,y1,x2,y2,line[i].x2,line[i].y2)>eps)
            return 0;
    }
    return 1;
}
int main()
{
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        for(int i=0;i<n;i++)
        {
            scanf("%lf%lf%lf%lf",&line[i].x1,&line[i].y1,&line[i].x2,&line[i].y2);
        }
        if(n<3)
        {
            printf("Yes!\n");
            continue;
        }
        int flag=0;
      for(int i=0;i<n&&!flag;i++)
      {
          for(int j=i+1;j<n&&!flag;j++)
          {
              if(jude(line[i].x1,line[i].y1,line[j].x1,line[j].y1)||
                 jude(line[i].x1,line[i].y1,line[j].x2,line[j].y2)||
                 jude(line[i].x2,line[i].y2,line[j].x1,line[j].y1)||
                 jude(line[i].x2,line[i].y2,line[j].x2,line[j].y2))
                    flag=1;
          }
      }
      if(flag)
        printf("Yes!\n");
      else
        printf("No!\n");


    }
}


### Prefree Segments in IT Context In the context of information technology, prefree segments refer to memory management techniques used primarily within operating systems and runtime environments. These segments represent blocks of memory that have been previously allocated but are now available for reuse without immediate deallocation back to the system's global pool. Prefree segments can significantly enhance performance by reducing fragmentation and minimizing overhead associated with frequent allocation and deallocation operations[^1]. When dealing with large-scale applications such as those mentioned involving data processing pipelines or e-commerce platforms, managing these segments efficiently becomes crucial for maintaining optimal application responsiveness and resource utilization[^2]. #### Usage Examples For instance, consider a scenario where an application frequently allocates small chunks of memory during its operation cycle: ```c++ void* allocate_memory(size_t size) { void *ptr; // Attempt to find suitable segment from prefree list first if (find_suitable_segment(&ptr, size)) { return ptr; // Reuse existing free segment } else { // Allocate new block when no fitting prefree segment exists return malloc(size); } } ``` This approach allows developers to optimize memory handling while ensuring efficient use of resources through reusing already freed segments before resorting to requesting additional memory from the OS. #### Common Issues One common issue encountered is determining appropriate sizes for prefree segments which balance between preventing excessive fragmentation versus avoiding wastage due to oversized allocations. Another challenge lies in implementing effective garbage collection mechanisms capable of identifying truly unused segments promptly so they may be returned either into this special "prefree" state or fully released depending on policy requirements. --related questions-- 1. How do different programming languages handle prefree segments? 2. What algorithms exist specifically designed around optimizing prefree segment usage? 3. Can you provide examples demonstrating how improper implementation affects software stability? 4. In what ways does using prefree segments impact overall system security?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值