矩阵快速幂
POJ3233
Matrix Power Series
Time Limit: 3000MS Memory Limit: 131072K
Total Submissions: 23491 Accepted: 9773
Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4
0 1
1 1
Sample Output
1 2
2 3
Source
POJ Monthly–2007.06.03, Huang, Jinsong
题意:给一个 n * n 矩阵 ,计算 S = (A + A2 + A3 + … + Ak) % m
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int n , mol ;
struct martix{
int m[50][50];
}ans ,base;
martix mult(martix x,martix y) 矩阵乘法
{
martix tmp;
for(int i = 0 ; i < n ; i++)
for(int j = 0 ; j < n ; j++){
tmp.m[i][j] = 0;
for(int k = 0 ; k < n ; k++){
tmp.m[i][j] = (tmp.m[i][j] + (x.m[i][k])*(y.m[k][j])) % mol;
}
}
return tmp;
}
martix expo(martix x ,int k) 矩阵的幂
{
martix tmp;
int i , j;
for(int i = 0 ; i < n ; i++)
for(int j = 0 ; j < n ; j++){
if(i == j) tmp.m[i][j] = 1;
else tmp.m[i][j] = 0;
}
while(k){
if(k & 1) tmp = mult(tmp , x);
x = mult(x , x);
k >>= 1;
}
return tmp;
}
martix add(martix a , martix b) 矩阵加法
{
for(int i = 0 ; i < n ; i++)
for(int j = 0 ; j < n ; j++)
a.m[i][j] = (a.m[i][j] % mol + b.m[i][j] % mol ) % mol;
return a;
}
martix sum( martix x, int k)
{
martix tmp , y;
if(k == 1) return x;
tmp = sum(x , k / 2);
if(k & 1){
y = expo(x , k / 2 + 1);
tmp = add(mult(y , tmp) , tmp);
return add(tmp , y);
}
else{
y = expo(x , k / 2);
return add(mult(y , tmp) , tmp);
}
}
int main()
{
int k;
while(~scanf("%d%d%d" , &n , &k , &mol)){
for(int i = 0 ; i < n ; i++)
for(int j = 0 ; j < n ; j++)
scanf("%d",&base.m[i][j]);
ans = sum(base ,k);
for(int i = 0 ; i < n ; i++){
for(int j = 0 ; j < n ; j++)
printf("%d ",ans.m[i][j]);
printf("\n");
}
}
return 0;
}