给你一份航线列表 tickets
,其中 tickets[i] = [fromi, toi]
表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。
所有这些机票都属于一个从 JFK
(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK
开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。
- 例如,行程
["JFK", "LGA"]
与["JFK", "LGB"]
相比就更小,排序更靠前。
假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。
示例 1:
输入:tickets = [["MUC","LHR"],["JFK","MUC"],["SFO","SJC"],["LHR","SFO"]] 输出:["JFK","MUC","LHR","SFO","SJC"]
示例 2:
输入:tickets = [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]] 输出:["JFK","ATL","JFK","SFO","ATL","SFO"] 解释:另一种有效的行程是 ["JFK","SFO","ATL","JFK","ATL","SFO"] ,但是它字典排序更大更靠后。
提示:
1 <= tickets.length <= 300
tickets[i].length == 2
fromi.length == 3
toi.length == 3
fromi
和toi
由大写英文字母组成fromi != toi
做这道题之前需要对图论有一定了解,那个链式建立的图表,一定要很清晰,然后这段代码中使用unordered_map<string, map<string, int>> 这种数据结构来代表图的这种链表还有防止闭环导致的无限循环,很巧妙。以后可以经常使用这种方式;
另外一点需要说明的是,在map里first是按字典顺序存储的,这个结合这段代码相信就可以很好理解本题了
class Solution {
unordered_map<string, map<string, int>> targets;
bool backTracking(int count,vector<string>& result){
if(result.size()==count+1){
return true;
}
for(pair<const string,int>&target:targets[result[result.size()-1]]){
if(target.second>0){
result.push_back(target.first);
target.second--;
if(backTracking(count,result))return true;
result.pop_back();
target.second++;
}
}
return false;
}
public:
vector<string> findItinerary(vector<vector<string>>& tickets) {
vector<string> result;
for(const vector<string>&ve:tickets){
targets[ve[0]][ve[1]]++;
}
result.push_back("JFK");
backTracking(tickets.size(),result);
return result;
}
};
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。
n 皇后问题 研究的是如何将 n
个皇后放置在 n×n
的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n
,返回所有不同的 n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q'
和 '.'
分别代表了皇后和空位。
示例 1:
输入:n = 4 输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]] 解释:如上图所示,4 皇后问题存在两个不同的解法。
示例 2:
输入:n = 1 输出:[["Q"]]
提示:
1 <= n <= 9
n皇后问题并不复杂,主要是要搞懂如何暴力枚举,然后如何去除不合适的结果
class Solution {
vector<vector<string>> ans;
bool isvaild(int row,int m,vector<string> &path,int n){
for(int i=0;i<row;i++){
if(path[i][m]=='Q')return false;
}
for(int i=row-1,j=m-1;i>=0&&j>=0;i--,j--){
if(path[i][j]=='Q')return false;
}
for(int i=row-1,j=m+1;i>=0&&j<n;i--,j++){
if(path[i][j]=='Q')return false;
}
return true;
}
void backtracking(int n,int row,vector<string> &path){
if(n==row){
ans.push_back(path);
return;
}
for(int i=0;i<n;i++){
if(isvaild(row,i,path,n)){
path[row][i]='Q';
backtracking(n,row+1,path);
path[row][i]='.';
}
}
}
public:
vector<vector<string>> solveNQueens(int n) {
vector<string> ve;
for(int i=0;i<n;i++){
string m="";
for(int j=0;j<n;j++){
m+=".";
}
ve.push_back(m);
}
backtracking(n,0,ve);
return ans;
}
};
相关企业
编写一个程序,通过填充空格来解决数独问题。
数独的解法需 遵循如下规则:
- 数字
1-9
在每一行只能出现一次。 - 数字
1-9
在每一列只能出现一次。 - 数字
1-9
在每一个以粗实线分隔的3x3
宫内只能出现一次。(请参考示例图)
数独部分空格内已填入了数字,空白格用 '.'
表示。
示例 1:
输入:board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]] 输出:[["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]] 解释:输入的数独如上图所示,唯一有效的解决方案如下所示:
提示:
board.length == 9
board[i].length == 9
board[i][j]
是一位数字或者'.'
- 题目数据 保证 输入数独仅有一个解
这道题卡哥用了一种二维回溯法,其实也就是把二维数组展开成一位数组,等到最后一个填充结束,return true,通过bool,一直回溯到开头,直到程序运行结束
class Solution {
bool isvaild(int row,int col,char m,vector<vector<char>> board){
for(int i=0;i<9;i++){
if(board[row][i]==m||board[i][col]==m)return false;
}
int a = (row/3); int b=(col/3);
for(int i=a*3;i<a*3+3;i++){
for(int j=b*3;j<b*3+3;j++){
if(board[i][j]==m)return false;
}
}
return true;
}
bool backTracking(vector<vector<char>>& board){
for(int i=0;i<9;i++){
for(int j=0;j<9;j++){
if(board[i][j]=='.'){
for(char k='1';k<='9';k++){
if(isvaild(i,j,k,board)){
board[i][j]=k;
if(backTracking(board))return true;
board[i][j]='.';
}
}
return false;
}
}
}
return true;
}
public:
void solveSudoku(vector<vector<char>>& board) {
backTracking(board);
}
};