机器学习11-前馈神经网络识别手写数字1.0

本文详细描述了一个基于TensorFlow的全连接前馈神经网络,用于MNIST数据集的图像识别。通过构建模型、编译、训练和评估过程,展示了神经网络如何逐步提取和组合特征以进行分类。尽管对于未见过的数据(如手写粗体数字)表现一般,提示了模型泛化能力的提升空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这个示例中,使用的神经网络是一个简单的全连接前馈神经网络,也称为多层感知器(Multilayer Perceptron,MLP)。这个神经网络由几个关键组件构成:

1. 输入层
输入层接收输入数据,这里是一个 28x28 的灰度图像,每个像素值表示图像中的亮度值。

2. Flatten 层
Flatten 层用于将输入数据展平为一维向量,以便传递给后续的全连接层。在这里,我们将 28x28 的图像展平为一个长度为 784 的向量。

3. 全连接层(Dense 层)
全连接层是神经网络中最常见的层之一,每个神经元与上一层的每个神经元都连接。在这里,我们有一个包含 128 个神经元的隐藏层,以及一个包含 10 个神经元的输出层。隐藏层使用 ReLU(Rectified Linear Unit)激活函数,输出层使用 softmax 激活函数。

4. 输出层
输出层产生神经网络的输出,这里是一个包含 10 个元素的向量,每个元素表示对应类别的概率。softmax 函数用于将网络的原始输出转换为概率分布。

5. 编译模型
在编译模型时,我们指定了优化器(optimizer)和损失函数(loss function)。在这里,我们使用 Adam 优化器和稀疏分类交叉熵损失函数。

6. 训练模型
使用训练数据集对模型进行训练,以学习如何将输入映射到正确的输出。在训练过程中

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dracularking

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值