看了CHIERYU的理解,受益匪浅。 Product Quantizer翻译过来是 乘积量化 ,从字面理解大概包括了两个过程特征的分组量化过程和类别的笛卡尔积过程。假设有一个数据集,那么K-means的做法就是给定类别数目K,目标函数是所有样本到类中心的距离和最小,迭代计算优化目标函数,得到K个类中心和每个样本所属的类别。目标函数不变, 乘积量化