KMP算法的原理,这里我不写,建议参考:
http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html
http://blog.youkuaiyun.com/v_JULY_v/article/details/6545192
http://blog.youkuaiyun.com/joylnwang/article/details/6778316
这篇博客写的非常好,以本人的能力只能写出更烂的解释 .....所以就不再多此一举了,下面仅仅给出两段代码,分别用C++和Python写的(都已经编译通过),
希望能对大家有所帮助:
C++代码:
#include <iostream>
#include <cstring>
using namespace std;
bool piFun(char *pattern, int *pi) //pattern表示模式字符串,pi表示失配函数
{
if (pattern == NULL || pi == NULL) return false ;
int len = strlen(pattern) ;
pi[ 0 ] = -1 ;
int k = -1 ;
for (int i = 1; i < len ; ++ i)
{
while ( k >= 0 && pattern[k + 1] != pattern[i])
k = pi[k] ; //寻找一个满足条件的前缀,使得该前缀是pattern[0 ~ i -1]的一个后缀
if ( pattern[k + 1] == pattern[i])
++ k; //能够匹配的前缀和后缀的长度增加1
pi[i] = k ; //失配后开始查找的位置
}
return true ;
}
int matchStr(char *text, char*pattern)
{
if (text == NULL || pattern == NULL) return -1 ;
int lenT = strlen(text) ;
int lenP = strlen(pattern) ;
int *pi = new int[lenP] ;
if (!piFun(pattern, pi)) return - 1;
int k = -1 ;
for (int i = 0; i < lenT; ++ i)
{
while(k >= 0 && pattern[k + 1] != text[i])
k = pi[k] ; //下一个字符不能匹配
if (pattern[k + 1] == text[i])
++ k ; //匹配上下一个字符
if (k == lenP - 1) //已经找到可以匹配的pattern
{
delete[] pi ;
return (i - lenP + 1) ; //得到开始出现的第一个位置
}
}
delete[] pi ;
return - 1 ;
}
int main(int argc, char **argv)
{
char p[] = "ababbacdefgacd" ;
cout << matchStr(p, "aba") << endl;
cout << matchStr(p, "ba") << endl;
cout << matchStr(p, "efg") << endl;
cout << matchStr(p, "addf") << endl;
return 0 ;
}
#!/usr/bin/python
#Filename KMP.py
def piFun(pattern, pi):
if len(pattern) == 0:
return False
del pi[:]
pi.extend(-1 for i in range(0, len(pattern)))
pi[0] = -1
k = -1
for i in range(1, len(pattern)) :
while k >= 0 and pattern[k + 1] != pattern[i] :
k = pi[k]
if pattern[k + 1] == pattern[i] :
k = k + 1
pi[i] = k
return True
def matchStr(text, pattern) :
if len(text) == 0 or len(pattern) == 0 :
return -1
pi = []
if not piFun(pattern, pi) :
return -1
k = -1
for i in range(0, len(text)) :
while k >= 0 and pattern[k + 1] != text[i] :
k = pi[k]
if pattern[k + 1] == text[i] :
k = k + 1
if k == len(pattern) - 1 :
return (i - len(pattern) + 1)
return -1
print(matchStr('abcefabdefcnfghiorpnpp', 'ce'))
print(matchStr('abcefabdefcnfghiorpnpp', 'ab'))
print(matchStr('abcefabdefcnfghiorpnpp', 'ef'))
print(matchStr('abcefabdefcnfghiorpnpp', 'npp'))
print(matchStr('abcefabdefcnfghiorpnpp', 'ok'))