顽强的小白
1009 Product of Polynomials (25 分)
This time, you are supposed to find A×B where A and B are two polynomials.
Input Specification:
Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:K N1 aN1 N2 aN2 …where K is the number of nonzero terms in the polynomial, Ni and aNi are the exponents and coefficients, respectively. It is given that 1 ≤ K ≤10 ,0 ≤ NK < ⋯ < N2 <N1 ≤ 1000.
Output Specification:
For each test case you should output the product of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate up to 1 decimal place.
Sample Input:
2 1 2.4 0 3.2
2 2 1.5 1 0.5
Sample Output:
3 3 3.6 2 6.0 1 1.6
题目理解
本题求多项式相乘的问题,分给出两个多项式的个数,指数和系数。
思路 用数组储存,指数就是数组下标,系数就是存的数据,然后计算相乘的时候,指数相加,系数相乘。
细节 运算的时候有个细节,就是如果我不初始化数组为0,它就不认为0.0是0,它会输出0.0.
这里补充一个algorithm下的赋值函数 fill()
用法很简单就按代码中的形式就行,也可以为某一段的数组赋值。
代码实现
#include <cstdio>
#include <algorithm>
using namespace std;
int main(){
double A[1005],B[1005],C[2010];
fill(A,A+1005,0);
fill(B,B+1005,0);
fill(C,C+2010,0);
int n1,n2,n,e;
double co;
scanf("%d",&n1);
for(int i=0;i<n1;i++){
scanf("%d",&e);
scanf("%lf",&A[e]);
}
scanf("%d",&n2);
for(int i=0;i<n2;i++){
scanf("%d",&e);
scanf("%lf",&B[e]);
}
for(int i=0;i<1005;++i){
if(A[i]!=0){ //这样可以少算很多
for(int j=0;j<1005;++j){
co=A[i]*B[j];
e=i+j;
C[e]+=co;
}
}
}
int cnt=0;
for(int i=0;i<2010;++i){
if(C[i]!=0){
cnt++;
}
}
printf("%d",cnt);
for(int i=2009;i>=0;--i){
if(C[i]!=0){
printf(" %d %.1lf",i,C[i]);
}
}
}