MVSNet: Depth Inference for Unstructured Multi-view Stereo
ECCV 2018
核心思路
- extract deep visual image features
- build 3D cost column upon the reference camera frustum via the differential equations homography warping
- apply 3D convolution to regularize and regress the initial deep map
- refine with the reference image
input: one reference image + several source images
output: depth for the reference image
key sight: differential equations homography warping operation, encode camera geometries in the network to build the 3D cost volumes from 2D image features and enables the end-to-end training
contribution:
- encode the camera parameters as the differential equations homography to build the 3D cost volume upon the camera frustum
- bridge the 2D feature extraction and 3D cost regularization networks
- decouple the MVS reconstruction to smaller problems of per-view depth map estimation
- variance-based metric that maps multiple features into one cost feature to adopt arbitrary number of views
- 3D cost volumn is built upon the camera frustum instead of the regular Euclidean space
- decouple MVS reconstruction to per-view depth map estimation
相关工作
-
point cloud reconstruction: propagation strategy, gradually density the reconstruction
- 无法并行化,耗费时间长
-
volumetric reconstruction: 将3D空间划分为网格,判断点是否附着在surface
- 离散化误差,高内存消耗
-
depth map reconstruction
传统方法:</

MVSNet是一种针对非结构化多视图立体问题的深度推断网络,它结合了2D特征提取与3D成本体正则化,能够从多个视图中恢复三维结构。该方法使用差分同源变换构建3D成本体,并通过3D卷积网络正则化以获得初始深度图。
最低0.47元/天 解锁文章
4706

被折叠的 条评论
为什么被折叠?



